
 

 

DG-05603-001_v4.1  |  January 2012 

 

Design Guide 

CUDA C BEST PRACTICES GUIDE 

  



 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  ii 

DOCUMENT CHANGE HISTORY 

DG-05603-001_v4.1 

Version Date Authors Description of Change 

3.0 February 4, 2010 CW  

3.1 May 19, 2010 CW  

3.2 August 20, 2010 CW  

4.0 May 9, 2011 CW,NJ,VS  

4.1 January 11, 2012 CW,TB,JV,GZ See Section C.1 

 

 

  



 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  iii 

TABLE OF CONTENTS 

PREFACE ......................................................................................................... 1 

What is This Document? ..................................................................................... 1 

Who Should Read This Guide? .............................................................................. 1 

Assess, Parallelize, Optimize, Deploy ...................................................................... 2 

Assess ....................................................................................................... 3 

Parallelize ................................................................................................... 3 

Optimize ..................................................................................................... 3 

Deploy ....................................................................................................... 4 

Recommendations and Best Practices ..................................................................... 4 

ASSESSING YOUR APPLICATION ........................................................................ 5 

Chapter 1. Heterogeneous Computing .................................................................... 6 

1.1 Differences Between Host and Device.............................................................. 6 

1.2 What Runs on a CUDA-Enabled Device? ........................................................... 7 

Chapter 2. Application Profiling ....................................................................... 9 

2.1 Profile .................................................................................................... 9 

2.1.1 Creating the Profile ............................................................................ 9 

2.1.2 Identifying Hotspots ......................................................................... 10 

2.1.3 Understanding Scaling ....................................................................... 10 

PARALLELIZING YOUR APPLICATION ........................................................................ 13 

Chapter 3. Getting Started ............................................................................ 14 

3.1 Parallel Libraries....................................................................................... 14 

3.2 Parallelizing Compilers ............................................................................... 15 

3.3 Coding to Expose Parallelism ....................................................................... 15 

Chapter 4. Getting The Right Answer ............................................................. 16 

4.1 Verification ............................................................................................. 16 

4.1.1 Reference Comparison ....................................................................... 16 

4.1.2 Unit Testing ................................................................................... 17 

4.2 Debugging ............................................................................................. 17 

4.3 Numerical Accuracy and Precision ................................................................. 18 

4.3.1 Single vs. Double Precision ................................................................. 18 

4.3.2 Floating-Point Math Is Not Associative .................................................... 18 

4.3.3 Promotions to Doubles and Truncations to Floats ...................................... 18 

4.3.4 IEEE 754 Compliance ........................................................................ 19 

4.3.5 x86 80-bit Computations .................................................................... 19 

OPTIMIZING CUDA APPLICATIONS................................................................... 20 

Chapter 5. Performance Metrics .................................................................... 21 

5.1 Timing .................................................................................................. 21 

5.1.1 Using CPU Timers ............................................................................ 21 

5.1.2 Using CUDA GPU Timers .................................................................... 22 

5.2 Bandwidth .............................................................................................. 23 

5.2.1 Theoretical Bandwidth Calculation ......................................................... 23 



 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  iv 

5.2.2 Effective Bandwidth Calculation ............................................................ 23 

5.2.3 Throughput Reported by Visual Profiler................................................... 24 

Chapter 6. Memory Optimizations .................................................................. 25 

6.1 Data Transfer Between Host and Device ......................................................... 25 

6.1.1 Pinned Memory ............................................................................... 26 

6.1.2 Asynchronous Transfers and Overlapping Transfers with Computation ............. 26 

6.1.3 Zero Copy ...................................................................................... 29 

6.1.4 Unified Virtual Addressing ................................................................... 30 

6.2 Device Memory Spaces .............................................................................. 30 

6.2.1 Coalesced Access to Global Memory ...................................................... 32 

6.2.2 Shared Memory ............................................................................... 37 

6.2.3 Local Memory ................................................................................. 44 

6.2.4 Texture Memory .............................................................................. 45 

6.2.5 Constant Memory ............................................................................. 46 

6.2.6 Registers ....................................................................................... 46 

6.3 Allocation ............................................................................................... 47 

Chapter 7. Execution Configuration Optimizations ........................................... 48 

7.1 Occupancy ............................................................................................. 48 

7.1.1 Calculating Occupancy ....................................................................... 49 

7.2 Hiding Register Dependencies ...................................................................... 50 

7.3 Thread and Block Heuristics ........................................................................ 51 

7.4 Effects of Shared Memory ........................................................................... 52 

Chapter 8. Instruction Optimizations ............................................................. 54 

8.1 Arithmetic Instructions ............................................................................... 54 

8.1.1 Division and Modulo Operations ........................................................... 54 

8.1.2 Reciprocal Square Root ...................................................................... 55 

8.1.3 Other Arithmetic Instructions ............................................................... 55 

8.1.4 Math Libraries ................................................................................. 55 

8.1.5 Precision-related Compiler Flags ........................................................... 57 

8.2 Memory Instructions ................................................................................. 57 

Chapter 9. Control Flow ............................................................................... 58 

9.1 Branching and Divergence .......................................................................... 58 

9.2 Branch Predication .................................................................................... 59 

9.3 Loop counters signed vs. unsigned ................................................................ 59 

DEPLOYING CUDA APPLICATIONS .................................................................... 61 

Chapter 10. Understanding the Programming Environment .............................. 62 

10.1 CUDA Compute Capability ......................................................................... 62 

10.2 Additional Hardware Data ......................................................................... 63 

10.3 CUDA Runtime and Driver API Version .......................................................... 63 

10.4 Which Compute Capability to Target ............................................................ 64 

10.5 CUDA Runtime ...................................................................................... 65 

Chapter 11. Preparing the Application for Deployment .................................... 66 

11.1 Error handling ....................................................................................... 66 

11.2 Distributing the CUDA Runtime and libraries ................................................... 66 

Chapter 12. Deployment Infrastructure Tools ................................................ 68 



 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  v 

12.1 nvidia-smi ............................................................................................ 68 

12.1.1 Queryable state ............................................................................... 68 

12.1.2 Modifiable state ............................................................................... 69 

12.2 NVML ................................................................................................. 69 

12.3 Cluster Management Tools ........................................................................ 70 

12.4 Compiler JIT Cache Management ................................................................ 70 

12.5 CUDA_VISIBLE_DEVICES.......................................................................... 70 

Appendix A. Recommendations and Best Practices .......................................... 71 

A.1 Overall Performance Optimization Strategies .................................................. 71 

Appendix B. NVCC Compiler Switches ............................................................ 73 

B.1 NVCC ................................................................................................. 73 

Appendix C. Revision History ....................................................................... 74 

C.1 Version 4.1........................................................................................... 74 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  1 

PREFACE 

WHAT IS THIS DOCUMENT? 

This Best Practices Guide is a manual to help developers obtain the best performance 

from the NVIDIA® CUDA™ architecture using version 4.1 of the CUDA Toolkit. It 

presents established parallelization and optimization techniques and explains coding 

metaphors and idioms that can greatly simplify programming for the CUDA 

architecture. 

While the contents can be used as a reference manual, you should be aware that some 

topics are revisited in different contexts as various programming and configuration 

topics are explored. As a result, it is recommended that first-time readers proceed 

through the guide sequentially. This approach will greatly improve your understanding 

of effective programming practices and enable you to better use the guide for reference 

later. 

WHO SHOULD READ THIS GUIDE? 

The discussions in this guide all use the C programming language, so you should be 

comfortable reading C code.  

This guide refers to and relies on several other documents that you should have at your 

disposal for reference, all of which are available at no cost from the CUDA website 

http://developer.nvidia.com/cuda-downloads. The following documents are especially 

important resources: 

  CUDA Getting Started Guide 

  CUDA C Programming Guide 

http://developer.nvidia.com/cuda-downloads


 
Heterogeneous Computing 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  2 

  CUDA Toolkit Reference Manual  

In particular, the optimization section of this guide assumes that you have already 

successfully downloaded and installed the CUDA Toolkit (if not, please refer to the 

relevant CUDA Getting Started Guide for your platform) and that you have a basic 

familiarity with the CUDA C programming language and environment (if not, please 

refer to the CUDA C Programming Guide). 

ASSESS, PARALLELIZE, OPTIMIZE, DEPLOY 

This guide introduces the Assess, Parallelize, Optimize, Deploy (“APOD”) design cycle for 

applications with the goal of helping application developers to rapidly identify the 

portions of their code that would most readily benefit from GPU acceleration, rapidly 

realize that benefit, and begin leveraging the resulting speedups in production as early 

as possible. 

APOD is a cyclical process: initial speedups can be achieved, tested, and deployed with 

only minimal initial investment of time, at which point the cycle can begin again by 

identifying further optimization opportunities, seeing additional speedups, and then 

deploying the even faster versions of the application into production. 

 

 

ASSESS 

PARALLELIZE 

OPTIMIZE 

DEPLOY 



 
Heterogeneous Computing 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  3 

Assess 

For an existing project, the first step is to assess the application to locate the parts of the 

code that are responsible for the bulk of the execution time. Armed with this knowledge, 

the developer can evaluate these bottlenecks for parallelization and start to investigate 

GPU acceleration. 

By understanding the end-user’s requirements and constraints and by applying 

Amdahl’s and Gustafson’s laws, the developer can determine the upper bound of 

performance improvement from acceleration of the identified portions of the 

application. 

Parallelize 

Having identified the hotspots and having done the basic exercises to set goals and 

expectations, the developer needs to parallelize the code. Depending on the original 

code, this can be as simple as calling into an existing GPU-optimized library such as 

cuBLAS, cuFFT, or Thrust, or it could be as simple as adding a few preprocessor 

directives as hints to a parallelizing compiler. 

On the other hand, some applications’ designs will require some amount of refactoring 

to expose their inherent parallelism. As even future CPU architectures will require 

exposing this parallelism in order to improve or simply maintain the performance of 

sequential applications, the CUDA family of parallel programming languages (CUDA 

C/C++, CUDA Fortran, etc.) aims to make the expression of this parallelism as simple as 

possible, while simultaneously enabling operation on CUDA-capable GPUs designed for 

maximum parallel throughput. 

Optimize 

After each round of application parallelization is complete, the developer can move to 

optimizing the implementation to improve performance. Since there are many possible 

optimizations that can be considered, having a good understanding of the needs of the 

application can help to make the process as smooth as possible. However, as with APOD 

as a whole, program optimization is an iterative process (identify an opportunity for 

optimization, apply and test the optimization, verify the speedup achieved, and repeat), 

meaning that it is not necessary for a programmer to spend large amounts of time 

memorizing the bulk of all possible optimization strategies prior to seeing good 

speedups. Instead, strategies can be applied incrementally as they are learned. 

Optimizations can be applied at various levels, from overlapping data transfers with 

computation all the way down to fine-tuning floating-point operation sequences. The 

available profiling tools are invaluable for guiding this process, as they can help suggest 

a next-best course of action for the developer’s optimization efforts and provide 

references into the relevant portions of the optimization section of this guide. 



 
Heterogeneous Computing 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  4 

 

Deploy 

Having completed the GPU acceleration of one or more components of the application it 

is possible to compare the outcome with the original expectation. Recall that the initial 

assess step allowed the developer to determine an upper bound for the potential 

speedup attainable by accelerating given hotspots. 

Before tackling other hotspots to improve the total speedup, the developer should 

consider taking the partially parallelized implementation and carry it through to 

production. This is important for a number of reasons; for example, it allows the user to 

profit from their investment as early as possible (the speedup may be partial but is still 

valuable), and it minimizes risk for the developer and the user by providing an 

evolutionary rather than revolutionary set of changes to the application. 

RECOMMENDATIONS AND BEST PRACTICES 

Throughout this guide, specific recommendations are made regarding the design and 

implementation of CUDA C code. These recommendations are categorized by priority, 

which is a blend of the effect of the recommendation and its scope. Actions that present 

substantial improvements for most CUDA applications have the highest priority, while 

small optimizations that affect only very specific situations are given a lower priority. 

Before implementing lower priority recommendations, it is good practice to make sure 

all higher priority recommendations that are relevant have already been applied. This 

approach will tend to provide the best results for the time invested and will avoid the 

trap of premature optimization. 

The criteria of benefit and scope for establishing priority will vary depending on the 

nature of the program. In this guide, they represent a typical case. Your code might 

reflect different priority factors. Regardless of this possibility, it is good practice to verify 

that no higher-priority recommendations have been overlooked before undertaking 

lower-priority items. 

Code samples throughout the guide omit error checking for conciseness. Production 

code should, however, systematically check the error code returned by each API call and 

check for failures in kernel launches by calling cudaGetLastError(). 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  5 

ASSESSING YOUR APPLICATION 

From supercomputers to mobile phones, modern processors increasingly rely on 

parallelism to provide performance. The core computational unit, which includes 

control, arithmetic, registers and typically some cache, is replicated some number of 

times and connected to memory via a network. As a result, all modern processors 

require parallel code in order to achieve good utilization of their computational power. 

While processors are evolving to expose more fine-grained parallelism to the 

programmer, many existing applications have evolved either as serial codes or as coarse-

grained parallel codes (for example, where the data is decomposed into regions 

processed in parallel, with sub-regions shared using MPI). In order to profit from any 

modern processor architecture, GPUs included, the first steps are to assess the 

application to identify the hotspots, determine whether they can be parallelized, and 

understand the relevant workloads both now and in the future. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  6 

Chapter 1.  
HETEROGENEOUS COMPUTING 

CUDA programming involves running code on two different platforms concurrently: a 

host system with of one or more CPUs and one or more CUDA-enabled NVIDIA GPU 

devices. 

While NVIDIA GPUs are frequently associated with graphics, they are also powerful 

arithmetic engines capable of running thousands of lightweight threads in parallel. This 

capability makes them well suited to computations that can leverage parallel execution. 

However, the device is based on a distinctly different design from the host system, and 

it’s important to understand those differences and how they determine the performance 

of CUDA applications in order to use CUDA effectively. 

1.1 DIFFERENCES BETWEEN HOST AND DEVICE 

The primary differences are in threading model and in separate physical memories: 

 Threading resources. Execution pipelines on host systems can support a limited 

number of concurrent threads. Servers that have four hex-core processors today can 

run only 24 threads concurrently (or 48 if the CPUs support HyperThreading.) By 

comparison, the smallest executable unit of parallelism on a CUDA device comprises 

32 threads (termed a warp of threads). Modern NVIDIA GPUs can support up to 

1536 active threads concurrently per multiprocessor (see Section F.1 of the CUDA C 

Programming Guide). On GPUs with 16 multiprocessors, this leads to more than 

24,000 concurrently active threads. 

 Threads. Threads on a CPU are generally heavyweight entities. The operating 

system must swap threads on and off CPU execution channels to provide 

multithreading capability. Context switches (when two threads are swapped) are 



 
Heterogeneous Computing 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  7 

therefore slow and expensive. By comparison, threads on GPUs are extremely 

lightweight. In a typical system, thousands of threads are queued up for work (in 

warps of 32 threads each). If the GPU must wait on one warp of threads, it simply 

begins executing work on another. Because separate registers are allocated to all 

active threads, no swapping of registers or other state need occur when switching 

among GPU threads. Resources stay allocated to each thread until it completes its 

execution. In short, CPU cores are designed to minimize latency for one or two 

threads at a time each, whereas GPUs are designed to handle a large number of 

concurrent, lightweight threads in order to maximize throughput. 

 RAM. The host system and the device each have their own distinct attached physical 

memories. As the host and device memories are separated by the PCI Express (PCIe) 

bus, items in the host memory must occasionally be communicated across the bus to 

the device memory or vice versa as described in Section 1.2. 

These are the primary hardware differences between CPU hosts and GPU devices with 

respect to parallel programming. Other differences are discussed as they arise elsewhere 

in this document. Applications composed with these differences in mind can treat the 

host and device together as a cohesive heterogeneous system wherein each processing 

unit is leveraged to do the kind of work it does best: sequential work on the host and 

parallel work on the device. 

1.2 WHAT RUNS ON A CUDA-ENABLED DEVICE? 

The following issues should be considered when determining what parts of an 

application to run on the device: 

 The device is ideally suited for computations that can be run on numerous data 

elements simultaneously in parallel. This typically involves arithmetic on large data 

sets (such as matrices) where the same operation can be performed across thousands, 

if not millions, of elements at the same time. This is a requirement for good 

performance on CUDA: the software must use a large number (generally thousands 

or tens of thousands) of concurrent threads. The support for running numerous 

threads in parallel derives from the CUDA architecture’s use of a lightweight 

threading model described above. 

 For best performance, there should be some coherence in memory access by adjacent 

threads running on the device. Certain memory access patterns enable the hardware 

to coalesce groups of reads or writes of multiple data items into one operation. Data 

that cannot be laid out so as to enable coalescing, or that doesn’t have enough 

locality to use the L1 or texture caches effectively, will tend to see lesser speedups 

when used in computations on CUDA. 



 
Heterogeneous Computing 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  8 

 To use CUDA, data values must be transferred from the host to the device along the 

PCI Express (PCIe) bus. These transfers are costly in terms of performance and 

should be minimized. (See Section 6.1.) This cost has several ramifications: 

● The complexity of operations should justify the cost of moving data to and from 

the device. Code that transfers data for brief use by a small number of threads will 

see little or no performance benefit. The ideal scenario is one in which many 

threads perform a substantial amount of work.  

For example, transferring two matrices to the device to perform a matrix addition 

and then transferring the results back to the host will not realize much 

performance benefit. The issue here is the number of operations performed per 

data element transferred. For the preceding procedure, assuming matrices of size 

N×N, there are N2 operations (additions) and 3N2 elements transferred, so the ratio 

of operations to elements transferred is 1:3 or O(1). Performance benefits can be 

more readily achieved when this ratio is higher. For example, a matrix 

multiplication of the same matrices requires N3 operations (multiply-add), so the 

ratio of operations to elements transferred is O(N), in which case the larger the 

matrix the greater the performance benefit. The types of operations are an 

additional factor, as additions have different complexity profiles than, for example, 

trigonometric functions. It is important to include the overhead of transferring 

data to and from the device in determining whether operations should be 

performed on the host or on the device. 

● Data should be kept on the device as long as possible. Because transfers should be 

minimized, programs that run multiple kernels on the same data should favor 

leaving the data on the device between kernel calls, rather than transferring 

intermediate results to the host and then sending them back to the device for 

subsequent calculations. So, in the previous example, had the two matrices to be 

added already been on the device as a result of some previous calculation, or if the 

results of the addition would be used in some subsequent calculation, the matrix 

addition should be performed locally on the device. This approach should be used 

even if one of the steps in a sequence of calculations could be performed faster on 

the host. Even a relatively slow kernel may be advantageous if it avoids one or 

more PCIe transfers. Section 6.1 provides further details, including the 

measurements of bandwidth between the host and the device versus within the 

device proper. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  9 

Chapter 2.  
APPLICATION PROFILING 

2.1 PROFILE 

Many codes accomplish a significant portion of the work with a relatively small amount 

of code. Using a profiler, the developer can identify such hotspots and start to compile a 

list of candidates for parallelization. 

2.1.1 Creating the Profile 

There are many possible approaches to profiling the code, but in all cases the objective is 

the same: to identify the function or functions in which the application is spending most 

of its execution time. 

High Priority: To maximize developer productivity, profile the application to 
determine hotspots and bottlenecks. 

The most important consideration with any profiling activity is to ensure that the 

workload is realistic – i.e., that information gained from the test and decisions based 

upon that information are relevant to real data. Using unrealistic workloads can lead to 

sub-optimal results and wasted effort both by causing developers to optimize for 

unrealistic problem sizes and by causing developers to concentrate on the wrong 

functions. 

There are a number of tools that can be used to generate the profile. The following 

example is based on gprof, which is an open-source profiler for Linux platforms from 

the GNU Binutils collection. 



 
Application Profiling 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  10 

$ gcc -O2 -g –pg myprog.c 

$ gprof ./a.out > profile.txt 

Each sample counts as 0.01 seconds. 

  %   cumulative   self              self     total            

 time   seconds   seconds    calls  ms/call  ms/call  name     

 33.34      0.02     0.02     7208     0.00     0.00  genTimeStep 

 16.67      0.03     0.01      240     0.04     0.12  calcStats 

 16.67      0.04     0.01        8     1.25     1.25  calcSummaryData 

 16.67      0.05     0.01        7     1.43     1.43  write 

 16.67      0.06     0.01                             mcount 

  0.00      0.06     0.00      236     0.00     0.00  tzset 

  0.00      0.06     0.00      192     0.00     0.00  tolower 

  0.00      0.06     0.00       47     0.00     0.00  strlen 

  0.00      0.06     0.00       45     0.00     0.00  strchr 

  0.00      0.06     0.00        1     0.00    50.00  main 

  0.00      0.06     0.00        1     0.00     0.00  memcpy 

  0.00      0.06     0.00        1     0.00    10.11  print 

  0.00      0.06     0.00        1     0.00     0.00  profil 

  0.00      0.06     0.00        1     0.00    50.00  report 

2.1.2 Identifying Hotspots 

In the example above, we can clearly see that the function genTimeStep() takes one-third 

of the total running time of the application. This should be our first candidate function 

for parallelization. Section 2.1.3 discusses the potential benefit we might expect from 

such parallelization. 

It is worth noting that several of the other functions in the above example also take up a 

significant portion of the overall running time, such as calcStats() and 

calcSummaryData(). Parallelizing these functions as well should increase our speedup 

potential. However, since APOD is a cyclical process, we might opt to parallelize these 

functions in a subsequent APOD pass, thereby limiting the scope of our work in any 

given pass to a smaller set of incremental changes. 

2.1.3 Understanding Scaling 

The amount of performance benefit an application will realize by running on CUDA 

depends entirely on the extent to which it can be parallelized. Code that cannot be 

sufficiently parallelized should run on the host, unless doing so would result in 

excessive transfers between the host and the device. 

High Priority: To get the maximum benefit from CUDA, focus first on finding ways 
to parallelize sequential code. 

By understanding how applications can scale it is possible to set expectations and plan 

an incremental parallelization strategy. Section 2.1.3.1 describes strong scaling, which 

allows us to set an upper bound for the speedup with a fixed problem size. Section 



 
Application Profiling 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  11 

2.1.3.2 describes weak scaling, where the speedup is attained by growing the problem 

size. In many applications, a combination of strong and weak scaling is desirable. 

2.1.3.1 Strong scaling and Amdahl’s Law 

Strong scaling is a measure of how, for a fixed overall problem size, the time to solution 

decreases as more processors are added to a system. An application that exhibits linear 

strong scaling has a speedup equal to the number of processors used. 

Strong scaling is usually equated with Amdahl’s Law, which specifies the maximum 

speedup that can be expected by parallelizing portions of a serial program. Essentially, it 

states that the maximum speedup S of a program is: 

   
 

        
 
 

 

Here P is the fraction of the total serial execution time taken by the portion of code that 

can be parallelized and N is the number of processors over which the parallel portion of 

the code runs. 

The larger N is (that is, the greater the number of processors), the smaller the P/N 

fraction. It can be simpler to view N as a very large number, which essentially 

transforms the equation into S = 1 / (1 P). Now, if ¾ of the running time of a sequential 

program is parallelized, the maximum speedup over serial code is 1 / (1 – ¾) = 4. 

In reality, most applications do not exhibit perfectly linear strong scaling, even if they do 

exhibit some degree of strong scaling. For most purposes, the key point is that the larger 

the parallelizable portion P is, the greater the potential speedup. Conversely, if P is a 

small number (meaning that the application is not substantially parallelizable), 

increasing the number of processors N does little to improve performance. Therefore, to 

get the largest speedup for a fixed problem size, it is worthwhile to spend effort on 

increasing P, maximizing the amount of code that can be parallelized. 

2.1.3.2 Weak scaling and Gustafson’s Law 

Weak scaling is a measure of how the time to solution changes as more processors are 

added to a system with a fixed problem size per processor; i.e., where the overall problem 

size increases as the number of processors is increased. 

Weak scaling is often equated with Gustafson’s Law, which states that in practice, the 

problem size scales with the number of processors. Because of this, the maximum 

speedup S of a program is: 

                



 
Application Profiling 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  12 

Here P is the fraction of the total serial execution time taken by the portion of code that 

can be parallelized and N is the number of processors over which the parallel portion of 

the code runs. 

Another way of looking at Gustafson’s Law is that it is not the problem size that remains 

constant as we scale up the system but rather the execution time. Note that Gustafson’s 

Law assumes that the ratio of serial to parallel execution remains constant, reflecting 

additional cost in setting up and handling the larger problem. 

2.1.3.3 Applying Strong and Weak Scaling 

Understanding which type of scaling is most applicable to an application is an important 

part of estimating speedup. For some applications the problem size will remain constant 

and hence only strong scaling is applicable. An example would be modeling how two 

molecules interact with each other, where the molecule sizes are fixed. 

For other applications, the problem size will grow to fill the available processors. 

Examples include modeling fluids or structures as meshes or grids and some Monte 

Carlo simulations, where increasing the problem size provides increased accuracy. 

Having understood the application profile, the developer should understand how the 

problem size would change if the computational performance changes and then apply 

either Amdahl’s or Gustafson’s Law to determine an upper bound for the speedup. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  13 

PARALLELIZING YOUR APPLICATION 

Having identified the hotspots and having done the basic exercises to set goals and 

expectations, the developer needs to parallelize the code. Depending on the original 

code, this can be as simple as calling into an existing GPU-optimized library such as 

cuBLAS, cuFFT, or Thrust, or it could be as simple as adding a few preprocessor 

directives as hints to a parallelizing compiler. 

On the other hand, some applications’ designs will require some amount of refactoring 

to expose their inherent parallelism. As even future CPU architectures will require 

exposing this parallelism in order to improve or simply maintain the performance of 

sequential applications, the CUDA family of parallel programming languages (CUDA 

C/C++, CUDA Fortran, etc.) aims to make the expression of this parallelism as simple as 

possible, while simultaneously enabling operation on CUDA-capable GPUs designed for 

maximum parallel throughput. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  14 

Chapter 3.  
GETTING STARTED 

There are several key strategies for parallelizing sequential code. While the details of 

how to apply these strategies to a particular application is a complex and problem-

specific topic, the general themes listed here apply regardless of whether we are 

parallelizing code to run on for multicore CPUs or for use on CUDA GPUs. 

3.1 PARALLEL LIBRARIES 

The most straightforward approach to parallelizing an application is to leverage existing 

libraries that take advantage of parallel architectures on our behalf. The CUDA Toolkit 

includes a number of such libraries that have been fine-tuned for NVIDIA CUDA GPUs, 

such as cuBLAS, cuFFT, and so on. 

The key here is that libraries are most useful when they match well with the needs of the 

application. Applications already using other BLAS libraries can often quite easily 

switch to cuBLAS, for example, whereas applications that do little to no linear algebra 

will have little use for cuBLAS. The same goes for other CUDA Toolkit libraries: cuFFT 

has an interface similar to that of FFTW, etc. 

Also of note is the Thrust library, which is a parallel C++ template library similar to the 

C++ Standard Template Library. Thrust provides a rich collection of data parallel 

primitives such as scan, sort, and reduce, which can be composed together to implement 

complex algorithms with concise, readable source code. By describing your computation 

in terms of these high-level abstractions you provide Thrust with the freedom to select 

the most efficient implementation automatically. As a result, Thrust can be utilized in 

rapid prototyping of CUDA applications, where programmer productivity matters most, 

as well as in production, where robustness and absolute performance are crucial. 



 
Getting Started 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  15 

3.2 PARALLELIZING COMPILERS 

Another common approach to parallelization of sequential codes is to make use of 

parallelizing compilers. Often this means the use of directives-based approaches, where 

the programmer uses a pragma or other similar notation to provide hints to the compiler 

about where parallelism can be found without needing to modify or adapt the 

underlying code itself. By exposing parallelism to the compiler, directives allow the 

compiler to do the detailed work of mapping the computation onto the parallel 

architecture. 

The OpenACC standard provides a set of compiler directives to specify loops and 

regions of code in standard C, C++ and Fortran that should be offloaded from a host 

CPU to an attached accelerator such as a CUDA GPU. The details of managing the 

accelerator device are handled implicitly by an OpenACC-enabled compiler and 

runtime. 

See http://www.openacc-standard.org/ for details. 

3.3 CODING TO EXPOSE PARALLELISM 

For applications that need additional functionality or performance beyond what existing 

parallel libraries or parallelizing compilers can provide, parallel programming 

languages such as CUDA C/C++ that integrate seamlessly with existing sequential code 

are essential. 

Once we have located a hotspot in our application’s profile assessment and determined 

that custom code is the best approach, we can use CUDA C/C++ to expose the 

parallelism in that portion of our code as a CUDA kernel. We can then launch this kernel 

onto the GPU and retrieve the results without requiring major rewrites to the rest of our 

application. 

This approach is most straightforward when the majority of the total running time of 

our application is spent in a few relatively isolated portions of the code. More difficult to 

parallelize are applications with a very flat profile – i.e., applications where the time 

spent is spread out relatively evenly across a wide portion of the code base. For the latter 

variety of application, some degree of code refactoring to expose the inherent 

parallelism in the application might be necessary, but keep in mind that this refactoring 

work will tend to benefit all future architectures, CPU and GPU alike, so it is well worth 

the effort should it become necessary. 

 

http://www.openacc-standard.org/


 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  16 

Chapter 4.  
GETTING THE RIGHT ANSWER 

Obtaining the right answer is clearly the principal goal of all computation. On parallel 

systems, it is possible to run into difficulties not typically found in traditional serial-

oriented programming. These include threading issues, unexpected values due to the 

way floating-point values are computed, and challenges arising from differences in the 

way CPU and GPU processors operate. This chapter examines issues that can affect the 

correctness of returned data and points to appropriate solutions. 

4.1 VERIFICATION 

4.1.1 Reference Comparison 

A key aspect of correctness verification for modifications to any existing program is to 

establish some mechanism whereby previous known-good reference outputs from 

representative inputs can be compared to new results. After each change is made, ensure 

that the results match using whatever criteria apply to the particular algorithm. Some 

will expect bitwise identical results, which is not always possible, especially where 

floating-point arithmetic is concerned; see Section 4.3 regarding numerical accuracy. For 

other algorithms, implementations may be considered correct if they match the reference 

within some small epsilon. 

Note that the process used for validating numerical results can easily be extended to 

validate performance results as well. We want to ensure that each change we make is 

correct and that it improves performance (and by how much). Checking these things 

frequently as an integral part of our cyclical APOD process will help ensure that we 

achieve the desired results as rapidly as possible. 



 
Getting The Right Answer 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  17 

4.1.2 Unit Testing 

A useful counterpart to the reference comparisons described above is to structure the 

code itself in such a way that is readily verifiable at the unit level. For example, we can 

write our CUDA kernels as a collection of many short __device__ functions rather than 

one large monolithic __global__ function; each device function can be tested 

independently before hooking them all together. 

For example, many kernels have complex addressing logic for accessing memory in 

addition to their actual computation. If we validate our addressing logic separately prior 

to introducing the bulk of the computation, then this will simplify any later debugging 

efforts. (Note that the CUDA compiler considers any device code that does not 

contribute to a write to global memory as dead code subject to elimination, so we must 

at least write something out to global memory as a result of our addressing logic in order 

to successfully apply this strategy.) 

Going a step further, if most functions are defined as __host__ __device__ rather than 

just __device__ functions, then these functions can be tested on both the CPU and the 

GPU, thereby increasing our confidence that the function is correct and that there will 

not be any unexpected differences in the results. If there are differences, then those 

differences will be seen early and can be understood in the context of a simple function. 

As a useful side effect, this strategy will allow us a means to reduce code duplication 

should we wish to include both CPU and GPU execution paths in our application: if the 

bulk of the work of our CUDA kernels is done in __host__ __device__ functions, we can 

easily call those functions from both the host code and the device code without 

duplication. 

4.2 DEBUGGING 

CUDA-GDB is a port of the GNU Debugger that runs on Linux and Mac; see 

http://developer.nvidia.com/cuda-gdb. 

The NVIDIA Parallel Nsight debugging and profiling tool for Microsoft Windows Vista 

and Windows 7 is available as a free plugin for Microsoft Visual Studio; see 

http://developer.nvidia.com/nvidia-parallel-nsight. 

Several third-party debuggers now support CUDA debugging as well; see 

http://developer.nvidia.com/debugging-solutions for more details. 

http://developer.nvidia.com/cuda-gdb
http://developer.nvidia.com/nvidia-parallel-nsight
http://developer.nvidia.com/debugging-solutions


 
Getting The Right Answer 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  18 

4.3 NUMERICAL ACCURACY AND PRECISION 

Incorrect or unexpected results arise principally from issues of floating-point accuracy 

due to the way floating-point values are computed and stored. The following sections 

explain the principal items of interest. Other peculiarities of floating-point arithmetic are 

presented in Section F.2 of the CUDA C Programming Guide as well as in a whitepaper 

and accompanying webinar on floating-point precision and performance available from 

http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-

compliance-nvidia-gpus. 

4.3.1 Single vs. Double Precision 

Devices of compute capability 1.3 and higher provide native support for double-

precision floating-point values (that is, values 64 bits wide). Results obtained using 

double-precision arithmetic will frequently differ from the same operation performed 

via single-precision arithmetic due to the greater precision of the former and due to 

rounding issues. Therefore, it is important to be sure to compare like with like and to 

express the results within a certain tolerance rather than expecting them to be exact.  

Whenever doubles are used, use at least the –arch=sm_13 switch on the nvcc command 

line; see Sections 3.1.3 and 3.1.4 of the CUDA C Programming Guide for more details. 

4.3.2 Floating-Point Math Is Not Associative 

Each floating-point arithmetic operation involves a certain amount of rounding. 

Consequently, the order in which arithmetic operations are performed is important. If A, 

B, and C are floating-point values, (A+B)+C is not guaranteed to equal A+(B+C) as it is in 

symbolic math. When you parallelize computations, you potentially change the order of 

operations and therefore the parallel results might not match sequential results. This 

limitation is not specific to CUDA, but an inherent part of parallel computation on 

floating-point values. 

4.3.3 Promotions to Doubles and Truncations to Floats 

When comparing the results of computations of float variables between the host and 

device, make sure that promotions to double precision on the host do not account for 

different numerical results. For example, if the code segment 

float a; 

… 

a = a*1.02; 

were performed on a device of compute capability 1.2 or less, or on a device with 

compute capability 1.3 but compiled without enabling double precision (as mentioned 

http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus
http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus


 
Getting The Right Answer 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  19 

above), then the multiplication would be performed in single precision. However, if the 

code were performed on the host, the literal 1.02 would be interpreted as a double-

precision quantity and a would be promoted to a double, the multiplication would be 

performed in double precision, and the result would be truncated to a float—thereby 

yielding a slightly different result. If, however, the literal 1.02 were replaced with 1.02f, 

the result would be the same in all cases because no promotion to doubles would occur. 

To ensure that computations use single-precision arithmetic, always use float literals. 

In addition to accuracy, the conversion between doubles and floats (and vice versa) has 

a detrimental effect on performance, as discussed in Chapter 8. 

4.3.4 IEEE 754 Compliance 

All CUDA compute devices follow the IEEE 754 standard for binary floating-point 

representation, with some small exceptions. These exceptions, which are detailed in 

Section F.2 of the CUDA C Programming Guide, can lead to results that differ from IEEE 

754 values computed on the host system. 

One of the key differences is the fused multiply-add (FMA) instruction, which combines 

multiply-add operations into a single instruction execution. Its result will often differ 

slightly from results obtained by doing the two operations separately. 

4.3.5 x86 80-bit Computations 

x86 processors can use an 80-bit “double extended precision” math when performing 

floating-point calculations. The results of these calculations can frequently differ from 

pure 64-bit operations performed on the CUDA device. To get a closer match between 

values, set the x86 host processor to use regular double or single precision (64 bits and 

32 bits, respectively). This is done with the FLDCW assembly instruction or the equivalent 

operating system API. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  20 

OPTIMIZING CUDA APPLICATIONS 

After each round of application parallelization is complete, the developer can move to 

optimizing the implementation to improve performance. Since there are many possible 

optimizations that can be considered, having a good understanding of the needs of the 

application can help to make the process as smooth as possible. However, as with APOD 

as a whole, program optimization is an iterative process (identify an opportunity for 

optimization, apply and test the optimization, verify the speedup achieved, and repeat), 

meaning that it is not necessary for a programmer to spend large amounts of time 

memorizing the bulk of all possible optimization strategies prior to seeing good 

speedups. Instead, strategies can be applied incrementally as they are learned. 

Optimizations can be applied at various levels, from overlapping data transfers with 

computation all the way down to fine-tuning floating-point operation sequences. The 

available profiling tools are invaluable for guiding this process, as they can help suggest 

a next-best course of action for the developer’s optimization efforts and provide 

references into the relevant portions of the optimization section of this guide. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  21 

Chapter 5.  
PERFORMANCE METRICS 

When attempting to optimize CUDA code, it pays to know how to measure performance 

accurately and to understand the role that bandwidth plays in performance 

measurement. This chapter discusses how to correctly measure performance using CPU 

timers and CUDA events. It then explores how bandwidth affects performance metrics 

and how to mitigate some of the challenges it poses. 

5.1 TIMING 

CUDA calls and kernel executions can be timed using either CPU or GPU timers. This 

section examines the functionality, advantages, and pitfalls of both approaches. 

5.1.1 Using CPU Timers 

Any CPU timer can be used to measure the elapsed time of a CUDA call or kernel 

execution. The details of various CPU timing approaches are outside the scope of this 

document, but developers should always be aware of the resolution their timing calls 

provide. 

When using CPU timers, it is critical to remember that many CUDA API functions are 

asynchronous; that is, they return control back to the calling CPU thread prior to 

completing their work. All kernel launches are asynchronous, as are memory-copy 

functions with the Async suffix on their names. Therefore, to accurately measure the 

elapsed time for a particular call or sequence of CUDA calls, it is necessary to 

synchronize the CPU thread with the GPU by calling cudaDeviceSynchronize() 

immediately before starting and stopping the CPU timer. 



 
Performance Metrics 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  22 

cudaDeviceSynchronize()blocks the calling CPU thread until all CUDA calls previously 

issued by the thread are completed.  

Although it is also possible to synchronize the CPU thread with a particular stream or 

event on the GPU, these synchronization functions are not suitable for timing code in 

streams other than the default stream. cudaStreamSynchronize() blocks the CPU thread 

until all CUDA calls previously issued into the given stream have completed. 

cudaEventSynchronize() blocks until a given event in a particular stream has been 

recorded by the GPU. Because the driver may interleave execution of CUDA calls from 

other non-default streams, calls in other streams may be included in the timing. 

Because the default stream, stream 0, exhibits serializing behavior for work on the 

device (an operation in the default stream can begin only after all preceding calls in any 

stream have completed; and no subsequent operation in any stream can begin until it 

finishes), these functions can be used reliably for timing in the default stream. 

Be aware that CPU-to-GPU synchronization points such as those mentioned in this 

section imply a stall in the GPU’s processing pipeline and should thus be used sparingly 

to minimize their performance impact. 

5.1.2 Using CUDA GPU Timers 

The CUDA event API provides calls that create and destroy events, record events (via 

timestamp), and convert timestamp differences into a floating-point value in 

milliseconds. Listing 5.1 illustrates their use. 

cudaEvent_t start, stop; 

float time; 

 

cudaEventCreate(&start); 

cudaEventCreate(&stop); 

 

cudaEventRecord( start, 0 ); 

kernel<<<grid,threads>>> ( d_odata, d_idata, size_x, size_y,  

                           NUM_REPS); 

cudaEventRecord( stop, 0 ); 

cudaEventSynchronize( stop ); 

 

cudaEventElapsedTime( &time, start, stop ); 

cudaEventDestroy( start ); 

cudaEventDestroy( stop ); 

Listing 5.1 How to time code using CUDA events 

Here cudaEventRecord() is used to place the start and stop events into the default 

stream, stream 0. The device will record a timestamp for the event when it reaches that 

event in the stream. The cudaEventElapsedTime() function returns the time elapsed 

between the recording of the start and stop events. This value is expressed in 



 
Performance Metrics 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  23 

milliseconds and has a resolution of approximately half a microsecond. Like the other 

calls in this listing, their specific operation, parameters, and return values are described 

in the CUDA Toolkit Reference Manual. Note that the timings are measured on the GPU 

clock, so the timing resolution is operating-system-independent. 

5.2 BANDWIDTH 

Bandwidth—the rate at which data can be transferred—is one of the most important 

gating factors for performance. Almost all changes to code should be made in the 

context of how they affect bandwidth. As described in Chapter 6 of this guide, 

bandwidth can be dramatically affected by the choice of memory in which data is stored, 

how the data is laid out and the order in which it is accessed, as well as other factors. 

To measure performance accurately, it is useful to calculate theoretical and effective 

bandwidth. When the latter is much lower than the former, design or implementation 

details are likely to reduce bandwidth, and it should be the primary goal of subsequent 

optimization efforts to increase it. 

High Priority: Use the effective bandwidth of your computation as a metric when 
measuring performance and optimization benefits. 

5.2.1 Theoretical Bandwidth Calculation 

Theoretical bandwidth can be calculated using hardware specifications available in the 

product literature. For example, the NVIDIA Tesla M2090 uses GDDR5 (double data 

rate) RAM with a memory clock rate of 1.85 GHz and a 384-bit-wide memory interface. 

 Using these data items, the peak theoretical memory bandwidth of the NVIDIA Tesla 

M2090 is 177.6 GB/sec: 

( 1.85 × 109 × ( 384/8 ) × 2 ) / 109 = 177.6 GB/sec 

In this calculation, the memory clock rate is converted in to Hz, multiplied by the 

interface width (divided by 8, to convert bits to bytes) and multiplied by 2 due to the 

double data rate. Finally, this product is divided by 109 to convert the result to GB/s.  

Note that some calculations use 10243 instead of 109 for the final calculation. In such a 

case, the bandwidth would be 165.4GB/s. It is important to use the same divisor when 

calculating theoretical and effective bandwidth so that the comparison is valid. 

5.2.2 Effective Bandwidth Calculation 

Effective bandwidth is calculated by timing specific program activities and by knowing 

how data is accessed by the program. To do so, use this equation: 



 
Performance Metrics 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  24 

Effective bandwidth = (( Br + Bw ) / 109 ) / time 

Here, the effective bandwidth is in units of GB/s, Br is the number of bytes read per 

kernel, Bw is the number of bytes written per kernel, and time is given in seconds. 

For example, to compute the effective bandwidth of a 2048 x 2048 matrix copy, the 

following formula could be used: 

Effective bandwidth = (( 20482 x 4 x 2 ) / 109 ) / time 

The number of elements is multiplied by the size of each element (4 bytes for a float), 

multiplied by 2 (because of the read and write), divided by 109 (or 1,0243) to obtain GB of 

memory transferred. This number is divided by the time in seconds to obtain GB/s.  

5.2.3 Throughput Reported by Visual Profiler 

For devices with compute capability of 2.0 or greater, the Visual Profiler can be used to 

collect several different memory throughput measures. The following throughput 

metrics can be displayed in the Details or Detail Graphs view:  

 Requested Global Load Throughput  

 Requested Global Store Throughput  

 Global Load Throughput  

 Global Store Throughput  

 DRAM Read Throughput  

 DRAM Write Throughput  

The Requested Global Load Throughput and Requested Global Store Throughput values 

indicate the global memory throughput requested by the kernel and therefore 

correspond to the effective bandwidth obtained by the calculation shown under Effective 

Bandwidth Calculation. 

Because the minimum memory transaction size is larger than most word sizes, the actual 

memory throughput required for a kernel can include the transfer of data not used by 

the kernel. For global memory accesses, this actual throughput is reported by the Global 

Load Throughput and Global Store Throughput values.  

It’s important to note that both numbers are useful. The actual memory throughput 

shows how close the code is to the hardware limit, and a comparison of the effective or 

requested bandwidth to the actual bandwidth presents a good estimate of how much 

bandwidth is wasted by suboptimal coalescing of memory accesses (see Section 6.2.1). 

For global memory accesses, this comparison of requested memory bandwidth to actual 

memory bandwidth is reported by the Global Memory Load Efficiency and Global 

Memory Store Efficiency metrics. 

Note: the Visual Profiler uses 10243 when converting bytes/sec to GB/sec. 

http://127.0.0.1:55048/help/topic/com.nvidia.cuda.help/concepts/effective-bandwidth-calculation.html
http://127.0.0.1:55048/help/topic/com.nvidia.cuda.help/concepts/effective-bandwidth-calculation.html


 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  25 

Chapter 6.  
MEMORY OPTIMIZATIONS 

Memory optimizations are the most important area for performance. The goal is to 

maximize the use of the hardware by maximizing bandwidth. Bandwidth is best served 

by using as much fast memory and as little slow-access memory as possible. This 

chapter discusses the various kinds of memory on the host and device and how best to 

set up data items to use the memory effectively. 

6.1 DATA TRANSFER BETWEEN HOST AND 
DEVICE 

The peak theoretical bandwidth between the device memory and the GPU is much 

higher (177.6 GB/s on the NVIDIA Tesla M2090, for example) than the peak theoretical 

bandwidth between host memory and device memory (8 GB/s on the PCIe ×16 Gen2). 

Hence, for best overall application performance, it is important to minimize data 

transfer between the host and the device, even if that means running kernels on the GPU 

that do not demonstrate any speedup compared with running them on the host CPU. 

High Priority: Minimize data transfer between the host and the device, even if it 
means running some kernels on the device that do not show performance gains 
when compared with running them on the host CPU. 

Intermediate data structures should be created in device memory, operated on by the 

device, and destroyed without ever being mapped by the host or copied to host 

memory.  

Also, because of the overhead associated with each transfer, batching many small 

transfers into one larger transfer performs significantly better than making each transfer 

separately.  



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  26 

Finally, higher bandwidth between the host and the device is achieved when using page-

locked (or pinned) memory, as discussed in the CUDA C Programming Guide and Section 

6.1.1 of this document. 

6.1.1 Pinned Memory 

Page-locked or pinned memory transfers attain the highest bandwidth between the host 

and the device. On PCIe ×16 Gen2 cards, for example, pinned memory can attain greater 

than 5 GB/s transfer rates.  

Pinned memory is allocated using the cudaHostAlloc() functions in the Runtime API. 

The bandwidthTest.cu program in the NVIDIA GPU Computing SDK shows how to use 

these functions as well as how to measure memory transfer performance.  

Pinned memory should not be overused. Excessive use can reduce overall system 

performance because pinned memory is a scarce resource. How much is too much is 

difficult to tell in advance, so as with all optimizations, test the applications and the 

systems they run on for optimal performance parameters. 

6.1.2 Asynchronous Transfers and Overlapping 
Transfers with Computation 

Data transfers between the host and the device using cudaMemcpy() are blocking 

transfers; that is, control is returned to the host thread only after the data transfer is 

complete. The cudaMemcpyAsync() function is a non-blocking variant of cudaMemcpy() in 

which control is returned immediately to the host thread. In contrast with cudaMemcpy(), 

the asynchronous transfer version requires pinned host memory (see Section 6.1.1), and it 

contains an additional argument, a stream ID. A stream is simply a sequence of 

operations that are performed in order on the device. Operations in different streams 

can be interleaved and in some cases overlapped—a property that can be used to hide 

data transfers between the host and the device. 

Asynchronous transfers enable overlap of data transfers with computation in two 

different ways. On all CUDA-enabled devices, it is possible to overlap host computation 

with asynchronous data transfers and with device computations. For example, Listing 

6.1 demonstrates how host computation in the routine cpuFunction() is performed 

while data is transferred to the device and a kernel using the device is executed. 

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0); 

kernel<<<grid, block>>>(a_d); 

cpuFunction(); 

Listing 6.1 Overlapping computation and data transfers 

The last argument to the cudaMemcpyAsync() function is the stream ID, which in this case 

uses the default stream, stream 0. The kernel also uses the default stream, and it will not 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  27 

begin execution until the memory copy completes; therefore, no explicit synchronization 

is needed. Because the memory copy and the kernel both return control to the host 

immediately, the host function cpuFunction() overlaps their execution.  

In Listing 6.1, the memory copy and kernel execution occur sequentially. On devices that 

are capable of concurrent copy and compute, it is possible to overlap kernel execution on 

the device with data transfers between the host and the device. Whether a device has 

this capability is indicated by the deviceOverlap field of the cudaDeviceProp structure (or 

listed in the output of the deviceQuery SDK sample). On devices that have this 

capability, the overlap once again requires pinned host memory, and, in addition, the 

data transfer and kernel must use different, non-default streams (streams with non-zero 

stream IDs). Non-default streams are required for this overlap because memory copy, 

memory set functions, and kernel calls that use the default stream begin only after all 

preceding calls on the device (in any stream) have completed, and no operation on the 

device (in any stream) commences until they are finished.  

Listing 6.2 illustrates the basic technique. 

cudaStreamCreate(&stream1); 

cudaStreamCreate(&stream2); 

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, stream1); 

kernel<<<grid, block, 0, stream2>>>(otherData_d); 

Listing 6.2 Concurrent copy and execute 

In this code, two streams are created and used in the data transfer and kernel executions 

as specified in the last arguments of the cudaMemcpyAsync call and the kernel’s execution 

configuration. 

Listing 6.2 demonstrates how to overlap kernel execution with asynchronous data 

transfer. This technique could be used when the data dependency is such that the data 

can be broken into chunks and transferred in multiple stages, launching multiple kernels 

to operate on each chunk as it arrives. Listing 6.3 and Listing 6.4 demonstrate this. They 

produce equivalent results. The first segment shows the reference sequential 

implementation, which transfers and operates on an array of N floats (where N is 

assumed to be evenly divisible by nThreads). 

cudaMemcpy(a_d, a_h, N*sizeof(float), dir); 

kernel<<<N/nThreads, nThreads>>>(a_d); 

Listing 6.3 Sequential copy and execute 

size=N*sizeof(float)/nStreams; 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  28 

for (i=0; i<nStreams; i++) { 

    offset = i*N/nStreams; 

    cudaMemcpyAsync(a_d+offset, a_h+offset, size, dir, stream[i]); 

    kernel<<<N/(nThreads*nStreams), nThreads, 0,   

             stream[i]>>>(a_d+offset); 

} 

Listing 6.4 shows how the transfer and kernel execution can be broken up into nStreams 

stages. This approach permits some overlapping of the data transfer and execution. 

size=N*sizeof(float)/nStreams; 

for (i=0; i<nStreams; i++) { 

    offset = i*N/nStreams; 

    cudaMemcpyAsync(a_d+offset, a_h+offset, size, dir, stream[i]); 

    kernel<<<N/(nThreads*nStreams), nThreads, 0,   

             stream[i]>>>(a_d+offset); 

} 

Listing 6.4 Staged concurrent copy and execute 

(In Listing 6.4, it is assumed that N is evenly divisible by nThreads*nStreams.) Because 

execution within a stream occurs sequentially, none of the kernels will launch until the 

data transfers in their respective streams complete. Current GPUs can simultaneously 

process asynchronous data transfers and execute kernels. GPUs with a single copy 

engine can perform one asynchronous data transfer and execute kernels whereas GPUs 

with two copy engines can simultaneously perform one asynchronous data transfer 

from the host to the device, one asynchronous data transfer from the device to the host, 

and execute kernels. The number of copy engines on a GPU is given by the 

asyncEngineCount field of the cudaDeviceProp structure, which is also listed in the output 

of the deviceQuery SDK sample. (It should be mentioned that it is not possible to overlap 

a blocking transfer with an asynchronous transfer, because the blocking transfer occurs 

in the default stream, so it will not begin until all previous CUDA calls complete. It will 

not allow any other CUDA call to begin until it has completed.) A diagram depicting the 

timeline of execution for the two code segments is shown in Figure 6.1, and nStreams is 

equal to 4 for Listing 6.4 in the bottom half of the figure. 

 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  29 

Figure 6.1 Timeline comparison for sequential (top) and concurrent 
(bottom) copy and kernel execution  

For this example, it is assumed that the data transfer and kernel execution times are 

comparable. In such cases, and when the execution time (tE) exceeds the transfer time 

(tT), a rough estimate for the overall time is tE + tT/nStreams for the staged version versus 

tE + tT for the sequential version. If the transfer time exceeds the execution time, a rough 

estimate for the overall time is tT + tE/nStreams. 

6.1.3 Zero Copy 

Zero copy is a feature that was added in version 2.2 of the CUDA Toolkit. It enables GPU 

threads to directly access host memory. For this purpose, it requires mapped pinned 

(non-pageable) memory. On integrated GPUs (i.e., GPUs with the integrated field of the 

CUDA device properties structure set to 1), mapped pinned memory is always a 

performance gain because it avoids superfluous copies as integrated GPU and CPU 

memory are physically the same. On discrete GPUs, mapped pinned memory is 

advantageous only in certain cases. Because the data is not cached on the GPU, mapped 

pinned memory should be read or written only once, and the global loads and stores 

that read and write the memory should be coalesced. Zero copy can be used in place of 

streams because kernel-originated data transfers automatically overlap kernel execution 

without the overhead of setting up and determining the optimal number of streams. 

 Low Priority: Use zero-copy operations on integrated GPUs for CUDA Toolkit 
version 2.2 and later. 

The host code in Listing 6.5 shows how zero copy is typically set up. 

float *a_h, *a_map; 

… 

cudaGetDeviceProperties(&prop, 0); 

if (!prop.canMapHostMemory)  

    exit(0); 

cudaSetDeviceFlags(cudaDeviceMapHost); 

cudaHostAlloc(&a_h, nBytes, cudaHostAllocMapped); 

cudaHostGetDevicePointer(&a_map, a_h, 0); 

kernel<<<gridSize, blockSize>>>(a_map); 

Listing 6.5 Zero-copy host code 

In this code, the canMapHostMemory field of the structure returned by 

cudaGetDeviceProperties() is used to check that the device supports mapping host 

memory to the device’s address space. Page-locked memory mapping is enabled by 

calling cudaSetDeviceFlags() with cudaDeviceMapHost. Note that cudaSetDeviceFlags() 

must be called prior to setting a device or making a CUDA call that requires state (that 

is, essentially, before a context is created). Page-locked mapped host memory is 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  30 

allocated using cudaHostAlloc(), and the pointer to the mapped device address space is 

obtained via the function cudaHostGetDevicePointer(). In the code in Listing 6.5, 

kernel() can reference the mapped pinned host memory using the pointer a_map in 

exactly the same was as it would if a_map referred to a location in device memory. 

Note: mapped pinned host memory allows you to overlap CPU-GPU memory transfers 

with computation while avoiding the use of CUDA streams. But since any repeated 

access to such memory areas causes repeated PCIe transfers, consider creating a second 

area in device memory to manually cache the previously read host memory data. 

6.1.4 Unified Virtual Addressing 

Devices of compute capability 2.x support a special addressing mode called Unified 

Virtual Addressing (UVA) on 64-bit Linux, MacOS, and Windows XP and on Windows 

Vista/7 when using TCC driver mode. With UVA, the host memory and the device 

memories of all installed supported devices share a single virtual address space. 

Prior to UVA, an application had to keep track of which pointers referred to device 

memory (and for which device) and which referred to host memory as a separate bit of 

metadata (or as hard-coded information in the program) for each pointer. Using UVA, 

on the other hand, the physical memory space to which a pointer points can be 

determined simply by inspecting the value of the pointer using 

cudaPointerGetAttributes(). 

Under UVA, pinned host memory allocated with cudaHostAlloc() will have identical 

host and device pointers, so it is not necessary to call cudaHostGetDevicePointer() for 

such allocations. Host memory allocations pinned after-the-fact via cudaHostRegister(), 

however, will continue to have different device pointers than their host pointers, so 

cudaHostGetDevicePointer() remains necessary in that case. 

UVA is also a necessary precondition for enabling peer-to-peer (P2P) transfer of data 

directly across the PCIe bus for supported GPUs in supported configurations, bypassing 

host memory. 

See the CUDA C Programming Guide for further explanations and software requirements 

for UVA and P2P. 

6.2 DEVICE MEMORY SPACES 

CUDA devices use several memory spaces, which have different characteristics that 

reflect their distinct usages in CUDA applications. These memory spaces include global, 

local, shared, texture, and registers, as shown in Figure 6.2.  



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  31 

 

Figure 6.2 Memory spaces on a CUDA device 

Of these different memory spaces, global memory is the most plentiful; see Section F.1 of 

the CUDA C Programming Guide for the amounts of memory available in each memory 

space at each compute capability level. Global, local, and texture memory have the 

greatest access latency, followed by constant memory, shared memory, and the register 

file. 

The various principal traits of the memory types are shown in Table 6.1. 

Memory Location 

on/off chip 

Cached Access Scope Lifetime 

Register On n/a R/W 1 thread Thread 

Local Off † R/W 1 thread Thread 

Shared On n/a R/W All threads in block Block 

Global Off † R/W All threads + host Host allocation 

Constant Off Yes R All threads + host Host allocation 

Texture Off Yes R All threads + host Host allocation 

Table 6.1 Salient features of device memory 

† Cached only on devices of compute capability 2.x. 

In the case of texture access, if a texture reference is bound to a linear array in global 

memory, then the device code can write to the underlying array. Texture references that 

are bound to CUDA arrays can be written to via surface-write operations by binding a 

   Device 

DRAM 

Global 

Constant 

Texture 

Local 

 

 

 

  

 

GPU 

 

Multiprocessor 

Registers 

Shared Memory 
Multiprocessor 

Registers 

Shared Memory 
Multiprocessor 

Registers 
Shared Memory 

Constant and Texture  

Caches 

To Host 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  32 

surface to the same underlying CUDA array storage). Reading from a texture while 

writing to its underlying global memory array in the same kernel launch should be 

avoided because the texture caches are read-only and are not invalidated when the 

associated global memory is modified. 

6.2.1 Coalesced Access to Global Memory 

Perhaps the single most important performance consideration in programming for the 

CUDA architecture is the coalescing of global memory accesses. Global memory loads 

and stores by threads of a warp (of a half warp for devices of compute capability 1.x) are 

coalesced by the device into as few as one transaction when certain access requirements 

are met. 

High Priority: Ensure global memory accesses are coalesced whenever possible. 

The access requirements for coalescing depend on the compute capability of the device 

and are documented in the CUDA C Programming Guide (Section F.3.2 for compute 

capability 1.x and Section F.4.2 for compute capability 2.x).  

For devices of compute capability 2.x, the requirements can be summarized quite easily: 

the concurrent accesses of the threads of a warp will coalesce into a number of 

transactions equal to the number of cache lines necessary to service all of the threads of 

the warp. By default, all accesses are cached through L1, which as 128-byte lines. For 

scattered access patterns, to reduce overfetch, it can sometimes be useful to cache only in 

L2, which caches shorter 32-byte segments (see the CUDA C Programming Guide). 

Coalescing concepts are illustrated in the following simple examples. These examples 

assume compute capability 2.x. These examples assume that accesses are cached through 

L1, which is the default behavior, and that accesses are for 4-byte words, unless 

otherwise noted. 

For corresponding examples for compute capability 1.x, refer to earlier versions of this 

guide. 

6.2.1.1 A Simple Access Pattern  

The first and simplest case of coalescing can be achieved by any CUDA-enabled device: 

the k-th thread accesses the k-th word in a cache line. Not all threads need to participate. 

For example, if the threads of a warp access adjacent 4-byte words (e.g., adjacent float 

values), a single 128B L1 cache line and therefore a single coalesced transaction will 

service that memory access. Such a pattern is shown in Figure 6.3. 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  33 

 

Figure 6.3 Coalesced access – all threads access one cache line 

This access pattern results in a single 128-byte L1 transaction, indicated by the red 

rectangle. 

If some words of the line had not been requested by any thread (such as if several 

threads had accessed the same word or if some threads did not participate in the access), 

all data in the cache line is fetched anyway. Furthermore, if accesses by the threads of 

the warp had been permuted within this segment, still only one 128-byte L1 transaction 

would have been performed by a device with compute capability 2.x. 

6.2.1.2 A Sequential but Misaligned Access Pattern 

If sequential threads in a warp access memory that is sequential but not aligned with the 

cache lines, two 128-byte L1 cache will be requested, as shown in Figure 6.4. 

 

Figure 6.4 Unaligned sequential addresses that fit into two 128-byte L1-
cache lines 

For non-caching transactions (i.e., those that bypass L1 and use only the L2 cache), a 

similar effect is seen, except at the level of the 32-byte L2 segments. In Figure 6.5, we see 

an example of this: the same access pattern from Figure 6.4 is used, but now L1 caching 

is disabled, so now five 32-byte L2 segments are needed to satisfy the request. 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  34 

 

Figure 6.5 Misaligned sequential addresses that fall within five 32-byte 
L2 cache segments 

Memory allocated through the CUDA Runtime API, such as via cudaMalloc(), is 

guaranteed to be aligned to at least 256 bytes. Therefore, choosing sensible thread block 

sizes, such as multiples of the warp size (i.e., 32 on current GPUs), facilitates memory 

accesses by warps that are aligned to cache lines. (Consider what would happen to the 

memory addresses accessed by the second, third, and subsequent thread blocks if the 

thread block size was not a multiple of warp size, for example.) 

6.2.1.3 Effects of Misaligned Accesses 

It is easy and informative to explore the ramifications of misaligned accesses using a 

simple copy kernel, such as the one in Listing 6.6. 

__global__ void offsetCopy(float *odata, float* idata, int offset) 

{ 

    int xid = blockIdx.x * blockDim.x + threadIdx.x + offset; 

    odata[xid] = idata[xid]; 

} 

Listing 6.6 A copy kernel that illustrates misaligned accesses 

In Listing 6.6, data is copied from the input array idata to the output array, both of 

which exist in global memory. The kernel is executed within a loop in host code that 

varies the parameter offset from 0 to 32. (Figure 6.4 and Figure 6.5 correspond to 

misalignments in the cases of caching and non-caching memory accesses, respectively.) 

The effective bandwidth for the copy with various offsets on an NVIDIA Tesla M2090 

(compute capability 2.0, with ECC turned on, as it is by default) is shown in Figure 6.6. 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  35 

 

Figure 6.6 Performance of offsetCopy kernel 

For the NVIDIA Tesla M2090, global memory accesses with no offset or with offsets that 

are multiples of 32 words result in a single L1 cache line transaction or 4 L2 cache 

segment loads (for non-L1-caching loads). The achieved bandwidth is approximately 

130GB/s. Otherwise, either two L1 cache lines (caching mode) or four to five L2 cache 

segments (non-caching mode) are loaded per warp, resulting in approximately 4/5th of 

the memory throughput achieved with no offsets. 

An interesting point is that we might expect the caching case to perform worse than the 

non-caching case for this sample, given that each warp in the caching case fetches twice 

as many bytes as it requires, whereas in the non-caching case, only 5/4 as many bytes as 

required are fetched per warp. In this particular example, that effect is not apparent, 

however, because adjacent warps reuse the cache lines their neighbors fetched. So while 

the impact is still evident in the case of caching loads, it is not as great as we might have 

expected. It would have been more so if adjacent warps had not exhibited such a high 

degree of reuse of the over-fetched cache lines. 

6.2.1.4 Strided Accesses 

As seen above, in the case of misaligned sequential accesses, the caches of compute 

capability 2.x devices help a lot to achieve reasonable performance. It may be different 

with non-unit-strided accesses, however, and this is a pattern that occurs frequently 

when dealing with multidimensional data or matrices. For this reason, ensuring that as 

much as possible of the data in each cache line fetched is actually used is an important 

part of performance optimization of memory accesses on these devices. 

0

20

40

60

80

100

120

140

0 4 8 12 16 20 24 28 32

B
an

d
w

id
th

 (
G

B
/s

)

Offset

Copy with Offset (Tesla M2090 - ECC on)

Caching

Non-caching



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  36 

To illustrate the effect of strided access on effective bandwidth, see the kernel 

strideCopy() in Listing 6.7, which copies data with a stride of stride elements between 

threads from idata to odata. 

__global__ void strideCopy(float *odata, float* idata, int stride) 

{ 

    int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride; 

    odata[xid] = idata[xid]; 

} 

Listing 6.7 A kernel to illustrate non-unit stride data copy 

Figure 6.7 illustrates such a situation; in this case, threads within a warp access words in 

memory memory with a stride of 2. This action leads to a load of two L1 cache lines (or 

eight L2 cache segments in non-caching mode) per warp on the Tesla M2090 (compute 

capability 2.0). 

 

Figure 6.7 Adjacent threads accessing memory with a stride of 2 

A stride of 2 results in a 50% of load/store efficiency since half the elements in the 

transaction are not used and represent wasted bandwidth. As the stride increases, the 

effective bandwidth decreases until the point where 32 lines of cache are loaded for the 

32 threads in a warp, as indicated in Figure 6.8. 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  37 

 

Figure 6.8 Performance of strideCopy kernel 

As illustrated in Figure 6.8, non-unit-stride global memory accesses should be avoided 

whenever possible. One method for doing so utilizes shared memory, which is 

discussed in the next section. 

6.2.2 Shared Memory 

Because it is on-chip, shared memory has much higher bandwidth and lower latency 

than local and global memory—provided there are no bank conflicts between the 

threads, as detailed in the following section.  

6.2.2.1 Shared Memory and Memory Banks 

To achieve high memory bandwidth for concurrent accesses, shared memory is divided 

into equally sized memory modules (banks) that can be accessed simultaneously. 

Therefore, any memory load or store of n addresses that spans n distinct memory banks 

can be serviced simultaneously, yielding an effective bandwidth that is n times as high 

as the bandwidth of a single bank. 

However, if multiple addresses of a memory request map to the same memory bank, the 

accesses are serialized. The hardware splits a memory request that has bank conflicts 

into as many separate conflict-free requests as necessary, decreasing the effective 

bandwidth by a factor equal to the number of separate memory requests. The one 

exception here is when multiple threads in a warp address the same shared memory 

location, resulting in a broadcast. Devices of compute capability 1.x require all threads of 

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

B
an

d
w

id
th

 (
G

B
/s

)

Stride

Copy with Stride (Tesla M2090 - ECC on)

Caching

Non-caching



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  38 

a half-warp to access the same address in shared memory for broadcast to occur; devices 

of compute capability 2.x have the additional ability to multicast shared memory 

accesses (i.e., to send copies of the same value to several but not all threads of the warp). 

To minimize bank conflicts, it is important to understand how memory addresses map 

to memory banks and how to optimally schedule memory requests.  

Medium Priority: Accesses to shared memory should be designed to avoid 
serializing requests due to bank conflicts. 

Shared memory banks are organized such that successive 32-bit words are assigned to 

successive banks and each bank has a bandwidth of 32 bits per clock cycle. The 

bandwidth of shared memory is 32 bits per bank per clock cycle. 

For devices of compute capability 1.x, the warp size is 32 threads and the number of 

banks is 16. A shared memory request for a warp is split into one request for the first 

half of the warp and one request for the second half of the warp. Note that no bank 

conflict occurs if only one memory location per bank is accessed by a half warp of 

threads. 

For devices of compute capability 2.x, the warp size is 32 threads and the number of 

banks is also 32. A shared memory request for a warp is not split as with devices of 

compute capability 1.x, meaning that bank conflicts can occur between threads in the 

first half of a warp and threads in the second half of the same warp (see Section F.4.3 of 

the CUDA C Programming Guide). 

Refer to the CUDA C Programming Guide for more information on how accesses and 

banks can be matched to avoid conflicts.  

6.2.2.2 Shared Memory in Matrix Multiplication (C = AB) 

Shared memory enables cooperation between threads in a block. When multiple threads 

in a block use the same data from global memory, shared memory can be used to access 

the data from global memory only once. Shared memory can also be used to avoid 

uncoalesced memory accesses by loading and storing data in a coalesced pattern from 

global memory and then reordering it in shared memory. Aside from memory bank 

conflicts, there is no penalty for non-sequential or unaligned accesses by a warp in 

shared memory. 

The use of shared memory is illustrated via the simple example of a matrix 

multiplication C = AB for the case with A of dimension M×w, B of dimension w×N, and 

C of dimension M×N. To keep the kernels simple, M and N are multiples of 32, and w is 

16 for devices of compute capability 1.x or 32 for devices of compute capability 2.x. 

A natural decomposition of the problem is to use a block and tile size of w×w threads. 

Therefore, in terms of w×w tiles, A is a column matrix, B is a row matrix, and C is their 

outer product; see Figure 6.9. A grid of N/w by M/w blocks is launched, where each 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  39 

thread block calculates the elements of a different tile in C from a single tile of A and a 

single tile of B. 

 

Figure 6.9 Block-column matrix (A) multiplied by block-row matrix (B) 
with resulting product matrix (C) 

To do this, the simpleMultiply kernel (Listing 6.8) calculates the output elements of a tile 

of matrix C. 

__global__ void simpleMultiply(float *a, float* b, float *c, 

                               int N) 

{ 

    int row = blockIdx.y * blockDim.y + threadIdx.y; 

    int col = blockIdx.x * blockDim.x + threadIdx.x; 

    float sum = 0.0f; 

    for (int i = 0; i < TILE_DIM; i++) { 

        sum += a[row*TILE_DIM+i] * b[i*N+col]; 

    } 

    c[row*N+col] = sum; 

} 

Listing 6.8 Unoptimized matrix multiplication 

In Listing 6.8, a, b, and c are pointers to global memory for the matrices A, B, and C, 

respectively; blockDim.x, blockDim.y, and TILE_DIM are all equal to w. Each thread in the 

w×w-thread block calculates one element in a tile of C. row and col are the row and 

column of the element in C being calculated by a particular thread. The for loop over i 

multiplies a row of A by a column of B, which is then written to C. 

The effective bandwidth of this kernel is only 14.5GB/s on an NVIDIA Tesla M2090 (with 

ECC on). To analyze performance, it is necessary to consider how warps access global 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  40 

memory in the for loop. Each warp of threads calculates one row of a tile of C, which 

depends on a single row of A and an entire tile of B as illustrated in Figure 6.10. 

 

Figure 6.10 Computing a row of a tile in C using one row of A and an 
entire tile of B 

For each iteration i of the for loop, the threads in a warp read a row of the B tile, which 

is a sequential and coalesced access for all compute capabilities. 

However, for each iteration i, all threads in a warp read the same value from global 

memory for matrix A, as the index row*TILE_DIM+i is constant within a warp. Even 

though such an access requires only 1 transaction on devices of compute capability 2.x, 

there is wasted bandwidth in the transaction, because only one 4-byte word out of 32 

words in the cache line is used. We can reuse this cache line in subsequent iterations of 

the loop, and we would eventually utilize all 32 words; however, when many warps 

execute on the same multiprocessor simultaneously, as is generally the case, the cache 

line may easily be evicted from the cache between iterations i and i+1. 

The performance on a device of any compute capability can be improved by reading a 

tile of A into shared memory as shown in Listing 6.9. 

__global__ void coalescedMultiply(float *a, float* b, float *c, 

                                  int N) 

{ 

    __shared__ float aTile[TILE_DIM][TILE_DIM]; 

 

    int row = blockIdx.y * blockDim.y + threadIdx.y; 

    int col = blockIdx.x * blockDim.x + threadIdx.x; 

    float sum = 0.0f; 

    aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x]; 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  41 

    for (int i = 0; i < TILE_DIM; i++) { 

        sum += aTile[threadIdx.y][i]* b[i*N+col]; 

    } 

    c[row*N+col] = sum; 

} 

Listing 6.9 Using shared memory to improve the global memory load 
efficiency in matrix multiplication 

In Listing 6.9, each element in a tile of A is read from global memory only once, in a fully 

coalesced fashion (with no wasted bandwidth), to shared memory. Within each iteration 

of the for loop, a value in shared memory is broadcast to all threads in a warp. No 

__syncthreads()synchronization barrier call is needed after reading the tile of A into 

shared memory because only threads within the warp that write the data into shared 

memory read the data (Note: in lieu of __syncthreads(), the __shared__ array may need 

to be marked as volatile for correctness on devices of compute capability 2.x; see the 

NVIDIA Fermi Compatibility Guide). This kernel has an effective bandwidth of 

32.7GB/s on an NVIDIA Tesla M2090. This illustrates the use of the shared memory as a 

“user-managed cache” when the hardware L1 cache eviction policy does not match up 

well with the needs of the application. 

A further improvement can be made to how Listing 6.9 deals with matrix B. In 

calculating each of the rows of a tile of matrix C, the entire tile of B is read. The repeated 

reading of the B tile can be eliminated by reading it into shared memory once (Listing 

6.10). 

__global__ void sharedABMultiply(float *a, float* b, float *c, 

                                 int N) 

{ 

    __shared__ float aTile[TILE_DIM][TILE_DIM], 

                     bTile[TILE_DIM][TILE_DIM]; 

    int row = blockIdx.y * blockDim.y + threadIdx.y; 

    int col = blockIdx.x * blockDim.x + threadIdx.x; 

    float sum = 0.0f; 

    aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x]; 

    bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col]; 

    __syncthreads(); 

    for (int i = 0; i < TILE_DIM; i++) { 

        sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x]; 

    } 

    c[row*N+col] = sum; 

} 

Listing 6.10 Improvement by reading additional data into shared memory 

Note that in Listing 6.10, a __syncthreads() call is required after reading the B tile 

because a warp reads data from shared memory that were written to shared memory by 

different warps. The effective bandwidth of this routine is 38.7 GB/s on an NVIDIA Tesla 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  42 

M2090. Note that the performance improvement is not due to improved coalescing in 

either case, but to avoiding redundant transfers from global memory.  

The results of the various optimizations are summarized in Table 6.2. 

Optimization NVIDIA Tesla M2090 

No optimization 14.5 GB/s 

Coalesced using shared 

memory to store a tile of A 
32.7 GB/s 

Using shared memory to 

eliminate redundant reads 

of a tile of B 

38.7 GB/s 

Table 6.2 Performance Improvements Optimizing C = AB Matrix Multiply 

 

Medium Priority: Use shared memory to avoid redundant transfers from global 
memory. 

 

6.2.2.3 Shared Memory in Matrix Multiplication (C = AAT) 

A variant of the previous matrix multiplication can be used to illustrate how strided 

accesses to global memory, as well as shared memory bank conflicts, are handled. This 

variant simply uses the transpose of A in place of B, so C = AAT. 

A simple implementation for C = AAT is shown in Listing 6.11. 

__global__ void simpleMultiply(float *a, float *c, int M) 

{ 

    int row = blockIdx.y * blockDim.y + threadIdx.y; 

    int col = blockIdx.x * blockDim.x + threadIdx.x; 

    float sum = 0.0f; 

    for (int i = 0; i < TILE_DIM; i++) { 

        sum += a[row*TILE_DIM+i] * a[col*TILE_DIM+i]; 

    } 

    c[row*M+col] = sum; 

} 

Listing 6.11 Unoptimized handling of strided accesses to global memory 

In Listing 6.11, the row-th, col-th element of C is obtained by taking the dot product of 

the row-th and col-th rows of A.  The effective bandwidth for this kernel is 3.64 GB/s on 

an NVIDIA Tesla M2090. These results are substantially lower than the corresponding 

measurements for the C = AB kernel. The difference is in how threads in a half warp 

access elements of A in the second term, a[col*TILE_DIM+i], for each iteration i. For a 

warp of threads, col represents sequential columns of the transpose of A, and therefore 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  43 

col*TILE_DIM represents a strided access of global memory with a stride of w, resulting 

in plenty of wasted bandwidth. 

The way to avoid strided access is to use shared memory as before, except in this case a 

warp reads a row of A into a column of a shared memory tile, as shown in Listing 6.12. 

__global__ void coalescedMultiply(float *a, float *c, int M) 

{ 

    __shared__ float aTile[TILE_DIM][TILE_DIM], 

                     transposedTile[TILE_DIM][TILE_DIM]; 

    int row = blockIdx.y * blockDim.y + threadIdx.y; 

    int col = blockIdx.x * blockDim.x + threadIdx.x; 

    float sum = 0.0f; 

    aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x]; 

    transposedTile[threadIdx.x][threadIdx.y] = 

        a[(blockIdx.x*blockDim.x + threadIdx.y)*TILE_DIM + 

        threadIdx.x];   

    __syncthreads(); 

    for (int i = 0; i < TILE_DIM; i++) { 

        sum += aTile[threadIdx.y][i]* transposedTile[i][threadIdx.x]; 

    } 

    c[row*M+col] = sum; 

} 

Listing 6.12 An optimized version of Listing 6.11 using coalesced reads 
from global memory 

Listing 6.12 uses the shared transposedTile to avoid uncoalesced accesses in the second 

term in the dot product and the shared aTile technique from the previous example to 

avoid uncoalesced accesses in the first term. The effective bandwidth of this kernel is 

27.5 GB/s on an NVIDIA Tesla M2090.These results are slightly lower than those 

obtained by the final kernel for C = AB. The cause of the difference is shared memory 

bank conflicts. 

The reads of elements in transposedTile within the for loop are free of conflicts, because 

threads of each half warp read across rows of the tile, resulting in unit stride across the 

banks. However, bank conflicts occur when copying the tile from global memory into 

shared memory. To enable the loads from global memory to be coalesced, data are read 

from global memory sequentially. However, this requires writing to shared memory in 

columns, and because of the use of w×w tiles in shared memory, this results in a stride 

between threads of w banks – every thread of the warp hits the same bank. (Recall that 

w is selected as 16 for devices of compute capability 1.x and 32 for devices of compute 

capability 2.x.) These many-way bank conflicts are very expensive. The simple remedy is 

to pad the shared memory array so that it has an extra column, as in the following line of 

code. 

__shared__ float transposedTile[TILE_DIM][TILE_DIM+1]; 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  44 

This padding eliminates the conflicts entirely, because now the stride between threads is 

w+1 banks (i.e., 17 or 33, depending on the compute capability), which, due to modulo 

arithmetic used to compute bank indices, is equivalent to a unit stride. After this change, 

the effective bandwidth is 39.2 GB/s on an NVIDIA Tesla M2090, which is comparable to 

the results from the last C = AB kernel. 

The results of these optimizations are summarized in Table 6.3. 

Optimization NVIDIA Tesla M2090 

No optimization 3.6 GB/s 

Using shared memory to 

coalesce global reads 
27.5 GB/s 

Removing bank conflicts 39.2 GB/s 

Table 6.3 Performance Improvements Optimizing C = AAT Matrix 
Multiplication 

These results should be compared with those in Table 6.2. As can be seen from these 

tables, judicious use of shared memory can dramatically improve performance. 

The examples in this section have illustrated three reasons to use shared memory: 

 To enable coalesced accesses to global memory, especially to avoid large strides (for 

general matrices, strides are much larger than 32) 

 To eliminate (or reduce) redundant loads from global memory 

 To avoid wasted bandwidth 

6.2.3 Local Memory 

Local memory is so named because its scope is local to the thread, not because of its 

physical location. In fact, local memory is off-chip. Hence, access to local memory is as 

expensive as access to global memory. Like global memory, local memory is not cached 

on devices of compute capability 1.x. In other words, the term “local” in the name does 

not imply faster access.  

Local memory is used only to hold automatic variables. This is done by the nvcc 

compiler when it determines that there is insufficient register space to hold the variable. 

Automatic variables that are likely to be placed in local memory are large structures or 

arrays that would consume too much register space and arrays that the compiler 

determines may be indexed dynamically. 

Inspection of the PTX assembly code (obtained by compiling with -ptx or -keep 

command-line options to nvcc) reveals whether a variable has been placed in local 

memory during the first compilation phases. If it has, it will be declared using the .local 

mnemonic and accessed using the ld.local and st.local mnemonics. If it has not, 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  45 

subsequent compilation phases might still decide otherwise, if they find the variable 

consumes too much register space for the targeted architecture. There is no way to check 

this for a specific variable, but the compiler reports total local memory usage per kernel 

(lmem) when run with the --ptxas-options=-v option.  

6.2.4 Texture Memory 

The read-only texture memory space is cached. Therefore, a texture fetch costs one 

device memory read only on a cache miss; otherwise, it just costs one read from the 

texture cache. The texture cache is optimized for 2D spatial locality, so threads of the 

same warp that read texture addresses that are close together will achieve best 

performance. Texture memory is also designed for streaming fetches with a constant 

latency; that is, a cache hit reduces DRAM bandwidth demand, but not fetch latency.  

In certain addressing situations, reading device memory through texture fetching can be 

an advantageous alternative to reading device memory from global or constant memory. 

6.2.4.1 Additional Texture Capabilities 

If textures are fetched using tex1D(), tex2D(), or tex3D() rather than tex1Dfetch(), the 

hardware provides other capabilities that might be useful for some applications such as 

image processing, as shown in Table 6.4. 

Feature Use Caveat 

Filtering Fast, low-precision interpolation 

between texels 

Valid only if the texture 

reference returns floating-point 

data 

Normalized texture 

coordinates 

Resolution-independent coding  

Addressing modes Automatic handling of boundary 

cases¹ 

Can be used only with normalized 

texture coordinates 

Table 6.4 Useful Features for tex1D(), tex2D(), and tex3D() Fetches 

¹The automatic handling of boundary cases in the bottom row of Table 6.4 refers to how a texture coordinate is resolved 

when it falls outside the valid addressing range. There are two options: clamp and wrap. If x is the coordinate and N is the 

number of texels for a one-dimensional texture, then with clamp, x is replaced by 0 if x < 0 and by 1-1/N if 1 ≤x. With wrap, 

x is replaced by frac(x) where frac(x) = x – floor(x). Floor returns the largest integer less than or equal to x. So, in clamp 

mode where N = 1, an x of 1.3 is clamped to 1.0; whereas in wrap mode, it is converted to 0.3 

 

Within a kernel call, the texture cache is not kept coherent with respect to global 

memory writes, so texture fetches from addresses that have been written via global 

stores in the same kernel call return undefined data. That is, a thread can safely read a 

memory location via texture if the location has been updated by a previous kernel call or 

memory copy, but not if it has been previously updated by the same thread or another 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  46 

thread within the same kernel call. This is relevant only when fetching from linear or 

pitch-linear memory because a kernel cannot write to CUDA arrays. 

6.2.5 Constant Memory 

There is a total of 64 KB constant memory on a device. The constant memory space is 

cached. As a result, a read from constant memory costs one memory read from device 

memory only on a cache miss; otherwise, it just costs one read from the constant cache.  

For all threads of a half warp, reading from the constant cache is as fast as reading from 

a register as long as all threads read the same address. Accesses to different addresses by 

threads within a half warp are serialized, so cost scales linearly with the number of 

different addresses read by all threads within a half warp.  

Alternatively, on devices of compute capability 2.x, programs use the LoaD Uniform 

(LDU) operation; see Section F.4.4 of the CUDA C Programming Guide for details. 

6.2.6 Registers 

Generally, accessing a register consumes zero extra clock cycles per instruction, but 

delays may occur due to register read-after-write dependencies and register memory 

bank conflicts.  

The latency of read-after-write dependencies is approximately 24 cycles, but this latency 

is completely hidden on multiprocessors that have at least 192 active threads (that is, 6 

warps) for devices of compute capability 1.x (8 CUDA cores per multiprocessor * 24 

cycles of latency = 192 active threads to cover that latency). For devices of compute 

capability 2.0, which have 32 CUDA cores per multiprocessor, as many as 768 threads 

might be required to completely hide latency.  

The compiler and hardware thread scheduler will schedule instructions as optimally as 

possible to avoid register memory bank conflicts. They achieve the best results when the 

number of threads per block is a multiple of 64. Other than following this rule, an 

application has no direct control over these bank conflicts. In particular, there is no 

register-related reason to pack data into float4 or int4 types. 

6.2.6.1 Register Pressure 

Register pressure occurs when there are not enough registers available for a given task. 

Even though each multiprocessor contains thousands of 32-bit registers (see Section F.1 

of the CUDA C Programming Guide), these are partitioned among concurrent threads. To 

prevent the compiler from allocating too many registers, use the –maxrregcount=N 

compiler command-line option (see Section B.1 below) or the launch bounds kernel 

definition qualifier (see Section B.17 of the CUDA C Programming Guide) to control the 

maximum number of registers to allocated per thread. 



 
Memory Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  47 

6.3 ALLOCATION 

Device memory allocation and de-allocation via cudaMalloc() and cudaFree() are 

expensive operations, so device memory should be reused and/or sub-allocated by the 

application wherever possible to minimize the impact of allocations on overall 

performance. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  48 

Chapter 7.  
EXECUTION CONFIGURATION 
OPTIMIZATIONS 

One of the keys to good performance is to keep the multiprocessors on the device as 

busy as possible. A device in which work is poorly balanced across the multiprocessors 

will deliver suboptimal performance. Hence, it’s important to design your application to 

use threads and blocks in a way that maximizes hardware utilization and to limit 

practices that impede the free distribution of work. A key concept in this effort is 

occupancy, which is explained in the following sections.  

Another important concept is the management of system resources allocated for a 

particular task. How to manage this resource utilization is discussed in the final sections 

of this chapter. 

7.1 OCCUPANCY 

Thread instructions are executed sequentially in CUDA, and, as a result, executing other 

warps when one warp is paused or stalled is the only way to hide latencies and keep the 

hardware busy. Some metric related to the number of active warps on a multiprocessor 

is therefore important in determining how effectively the hardware is kept busy. This 

metric is occupancy.  

Occupancy is the ratio of the number of active warps per multiprocessor to the 

maximum number of possible active warps. (To determine the latter number, see the 

deviceQuery code sample in the GPU Computing SDK or refer to Appendix F in the 

CUDA C Programming Guide.) Another way to view occupancy is the percentage of the 

hardware’s ability to process warps that is actively in use. 



 
Execution Configuration Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  49 

Higher occupancy does not always equate to higher performance—there is a point 

above which additional occupancy does not improve performance. However, low 

occupancy always interferes with the ability to hide memory latency, resulting in 

performance degradation. 

7.1.1 Calculating Occupancy  

One of several factors that determine occupancy is register availability. Register storage 

enables threads to keep local variables nearby for low-latency access. However, the set 

of registers (known as the register file) is a limited commodity that all threads resident on 

a multiprocessor must share. Registers are allocated to an entire block all at once. So, if 

each thread block uses many registers, the number of thread blocks that can be resident 

on a multiprocessor is reduced, thereby lowering the occupancy of the multiprocessor. 

The maximum number of registers per thread can be set manually at compilation time 

per-file using the –maxrregcount option or per-kernel using the __launch_bounds__ 

qualifier (see Section 6.2.6.1). 

For purposes of calculating occupancy, the number of registers used by each thread is 

one of the key factors. For example, devices with compute capability 1.0 and 1.1 have 

8,192 32-bit registers per multiprocessor and can have a maximum of 768 simultaneous 

threads resident (24 warps x 32 threads per warp). This means that in one of these 

devices, for a multiprocessor to have 100% occupancy, each thread can use at most 10 

registers. However, this approach of determining how register count affects occupancy 

does not take into account the register allocation granularity. For example, on a device of 

compute capability 1.0, a kernel with 128-thread blocks using 12 registers per thread 

results in an occupancy of 83% with 5 active 128-thread blocks per multiprocessor, 

whereas a kernel with 256-thread blocks using the same 12 registers per thread results in 

an occupancy of 66% because only two 256-thread blocks can reside on a multiprocessor. 

Furthermore, register allocations are rounded up to the nearest 256 registers per block 

on devices with compute capability 1.0 and 1.1. 

The number of registers available, the maximum number of simultaneous threads 

resident on each multiprocessor, and the register allocation granularity vary over 

different compute capabilities. Because of these nuances in register allocation and the 

fact that a multiprocessor’s shared memory is also partitioned between resident thread 

blocks, the exact relationship between register usage and occupancy can be difficult to 

determine. The --ptxas-options=-v option of nvcc details the number of registers used 

per thread for each kernel. See Section 4.2 of the CUDA C Programming Guide for the 

register allocation formulas for devices of various compute capabilities and Section F.1 

of the programming guide for the total number of registers available on those devices. 

Alternatively, NVIDIA provides an occupancy calculator in the form of an Excel 

spreadsheet that enables developers to hone in on the optimal balance and to test 

different possible scenarios more easily. This spreadsheet, shown in Using the CUDA 

Occupancy Calculator Usage to project GPU multiprocessor occupancy, is called 



 
Execution Configuration Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  50 

CUDA_Occupancy_Calculator.xls and is located in the tools subdirectory of the CUDA 

Toolkit installation. 

 

Figure 7.1 Using the CUDA Occupancy Calculator Usage to project GPU 
multiprocessor occupancy 

In addition to the calculator spreadsheet, occupancy can be determined using the 

NVIDIA Visual Profiler's Achieved Occupancy metric. The Visual Profiler also calculates 

occupancy as part of the Multiprocessor stage of application analysis. 

7.2 HIDING REGISTER DEPENDENCIES 

Medium Priority: To hide latency arising from register dependencies, maintain 
sufficient numbers of active threads per multiprocessor (i.e., sufficient 
occupancy). 

Register dependencies arise when an instruction uses a result stored in a register written 

by an instruction before it. The latency on current CUDA-enabled GPUs is 

approximately 24 cycles, so threads must wait 24 cycles before using an arithmetic 



 
Execution Configuration Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  51 

result. However, this latency can be completely hidden by the execution of threads in 

other warps. See Section 6.2.6 for details. 

 

7.3 THREAD AND BLOCK HEURISTICS 

Medium Priority: The number of threads per block should be a multiple of 32 
threads, because this provides optimal computing efficiency and facilitates 
coalescing. 

The dimension and size of blocks per grid and the dimension and size of threads per 

block are both important factors. The multidimensional aspect of these parameters 

allows easier mapping of multidimensional problems to CUDA and does not play a role 

in performance. As a result, this section discusses size but not dimension. 

Latency hiding and occupancy depend on the number of active warps per 

multiprocessor, which is implicitly determined by the execution parameters along with 

resource (register and shared memory) constraints. Choosing execution parameters is a 

matter of striking a balance between latency hiding (occupancy) and resource 

utilization. 

Choosing the execution configuration parameters should be done in tandem; however, 

there are certain heuristics that apply to each parameter individually. When choosing 

the first execution configuration parameter—the number of blocks per grid, or grid size—

the primary concern is keeping the entire GPU busy. The number of blocks in a grid 

should be larger than the number of multiprocessors so that all multiprocessors have at 

least one block to execute. Furthermore, there should be multiple active blocks per 

multiprocessor so that blocks that aren’t waiting for a __syncthreads() can keep the 

hardware busy. This recommendation is subject to resource availability; therefore, it 

should be determined in the context of the second execution parameter—the number of 

threads per block, or block size—as well as shared memory usage. To scale to future 

devices, the number of blocks per kernel launch should be in the thousands. 

When choosing the block size, it is important to remember that multiple concurrent 

blocks can reside on a multiprocessor, so occupancy is not determined by block size 

alone. In particular, a larger block size does not imply a higher occupancy. For example, 

on a device of compute capability 1.1 or lower, a kernel with a maximum block size of 

512 threads results in an occupancy of 66 percent because the maximum number of 

threads per multiprocessor on such a device is 768. Hence, only a single block can be 

active per multiprocessor. However, a kernel with 256 threads per block on such a 

device can result in 100 percent occupancy with three resident active blocks.  



 
Execution Configuration Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  52 

As mentioned in Section 7.1, higher occupancy does not always equate to better 

performance. For example, improving occupancy from 66 percent to 100 percent 

generally does not translate to a similar increase in performance. A lower occupancy 

kernel will have more registers available per thread than a higher occupancy kernel, 

which may result in less register spilling to local memory. Typically, once an occupancy 

of 50 percent has been reached, additional increases in occupancy do not translate into 

improved performance. It is in some cases possible to fully cover latency with even 

fewer warps, notably via instruction-level parallelism (ILP); for discussion, see 

http://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf. 

There are many such factors involved in selecting block size, and inevitably some 

experimentation is required. However, a few rules of thumb should be followed: 

 Threads per block should be a multiple of warp size to avoid wasting computation 

on under-populated warps and to facilitate coalescing. 

 A minimum of 64 threads per block should be used, and only if there are multiple 

concurrent blocks per multiprocessor. 

 Between 128 and 256 threads per block is a better choice and a good initial range for 

experimentation with different block sizes. 

 Use several (3 to 4) smaller thread blocks rather than one large thread block per 

multiprocessor if latency affects performance. This is particularly beneficial to 

kernels that frequently call __syncthreads(). 

Note that when a thread block allocates more registers than are available on a 

multiprocessor, the kernel launch fails, as it will when too much shared memory or too 

many threads are requested. 

7.4 EFFECTS OF SHARED MEMORY 

Shared memory can be helpful in several situations, such as helping to coalesce or 

eliminate redundant access to global memory. However, it also can act as a constraint on 

occupancy. In many cases, the amount of shared memory required by a kernel is related 

to the block size that was chosen, but the mapping of threads to shared memory 

elements does not need to be one-to-one. For example, it may be desirable to use a 32×32 

element shared memory array in a kernel, but because the maximum number of threads 

per block is 512, it is not possible to launch a kernel with 32×32 threads per block. In 

such cases, kernels with 32×16 or 32×8 threads can be launched with each thread 

processing two or four elements, respectively, of the shared memory array. The 

approach of using a single thread to process multiple elements of a shared memory 

array can be beneficial even if limits such as threads per block are not an issue. This is 

because some operations common to each element can be performed by the thread once, 

amortizing the cost over the number of shared memory elements processed by the 

thread.  

http://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf


 
Execution Configuration Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  53 

A useful technique to determine the sensitivity of performance to occupancy is through 

experimentation with the amount of dynamically allocated shared memory, as specified 

in the third parameter of the execution configuration. By simply increasing this 

parameter (without modifying the kernel), it is possible to effectively reduce the 

occupancy of the kernel and measure its effect on performance. 

As mentioned in the previous section, once an occupancy of more than 50 percent has 

been reached, it generally does not pay to optimize parameters to obtain higher 

occupancy ratios. The previous technique can be used to determine whether such a 

plateau has been reached. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  54 

Chapter 8.  
INSTRUCTION OPTIMIZATIONS 

Awareness of how instructions are executed often permits low-level optimizations that 

can be useful, especially in code that is run frequently (the so-called hot spot in a 

program). Best practices suggest that this optimization be performed after all higher-

level optimizations have been completed.  

8.1 ARITHMETIC INSTRUCTIONS 

Single-precision floats provide the best performance, and their use is highly encouraged. 

The throughput of individual arithmetic operations on devices of compute capability 1.x 

is detailed in Section F.3 of the CUDA C Programming Guide, and the throughput of 

these operations on devices of compute capability 2.x is detailed in Section F.4 of the 

programming guide. 

8.1.1 Division and Modulo Operations 

 

 Low Priority: Use shift operations to avoid expensive division and modulo 
calculations. 

Integer division and modulo operations are particularly costly and should be avoided or 

replaced with bitwise operations whenever possible: If n is a power of 2, (i/n) is 

equivalent to (i ≫ log2(n)) and (i % n) is equivalent to (i & (n-1)).  

The compiler will perform these conversions if n is literal. (For further information, refer 

to Chapter 5 of the CUDA C Programming Guide). 



 
Instruction Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  55 

8.1.2 Reciprocal Square Root 

The reciprocal square root should always be invoked explicitly as rsqrtf() for single 

precision and rsqrt() for double precision. The compiler optimizes 1.0f/sqrtf(x) into 

rsqrtf() only when this does not violate IEEE-754 semantics.  

8.1.3 Other Arithmetic Instructions  
 

 Low Priority: Avoid automatic conversion of doubles to floats.  

The compiler must on occasion insert conversion instructions, introducing additional 

execution cycles. This is the case for 

 Functions operating on char or short whose operands generally need to be 

converted to an int  

 Double-precision floating-point constants (defined without any type suffix) used as 

input to single-precision floating-point computations 

The latter case can be avoided by using single-precision floating-point constants, defined 

with an f suffix such as 3.141592653589793f, 1.0f, 0.5f. This suffix has accuracy 

implications in addition to its ramifications on performance. The effects on accuracy are 

discussed in Section 4.3.3. Note that this distinction is particularly important to 

performance on devices of compute capability 2.x. 

For single-precision code, use of the float type and the single-precision math functions 

are highly recommended. When compiling for devices without native double-precision 

support such as devices of compute capability 1.2 and earlier, each double-precision 

floating-point variable is converted to single-precision floating-point format (but retains 

its size of 64 bits) and double-precision arithmetic is demoted to single-precision 

arithmetic. 

It should also be noted that the CUDA math library’s complementary error function, 

erfcf(), is particularly fast with full single-precision accuracy. 

8.1.4 Math Libraries 
 

Medium Priority: Use the fast math library whenever speed trumps precision. 

Two types of runtime math operations are supported. They can be distinguished by 

their names: some have names with prepended underscores, whereas others do not (e.g., 

__functionName() versus functionName()). Functions following the __functionName() 

naming convention map directly to the hardware level. They are faster but provide 

somewhat lower accuracy (e.g., __sinf(x) and __expf(x)). Functions following 

functionName() naming convention are slower but have higher accuracy (e.g., sinf(x) 



 
Instruction Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  56 

and expf(x)). The throughput of __sinf(x), __cosf(x), and __expf(x) is much greater 

than that of sinf(x), cosf(x), tanf(x). The latter become even more expensive (about 

an order of magnitude slower) if the magnitude of the argument x needs to be reduced. 

Moreover, in such cases, the argument-reduction code uses local memory, which can 

affect performance even more because of the high latency of local memory. More details 

are available in the CUDA C Programming Guide.  

Note also that whenever sine and cosine of the same argument are computed, the 

sincos… family of instructions should be used to optimize performance: 

 sincosf() for single-precision fast math (see next paragraph)  

 sincosf() for regular single-precision 

 sincos() for double precision 

The –use_fast_math compiler option of nvcc coerces every functionName() call to the 

equivalent __functionName() call. This switch should be used whenever accuracy is a 

lesser priority than the performance. This is frequently the case with transcendental 

functions. Note this switch is effective only on single-precision floating point. 

Medium Priority: Prefer faster, more specialized math functions over slower, more 
general ones when possible. 

For small integer powers (e.g., x2 or x3), explicit multiplication is almost certainly faster 

than the use of general exponentiation routines such as pow(). While compiler 

optimization improvements continually seek to narrow this gap, explicit multiplication 

(or the use of an equivalent purpose-built inline function or macro) can have a 

significant advantage. This advantage is increased when several powers of the same 

base are needed (e.g., where both x2 and x5 are calculated in close proximity), as this aids 

the compiler in its common sub-expression elimination (CSE) optimization. 

For exponentiation using base 2 or 10, use the functions exp2() or expf2() and exp10() 

or expf10() rather than the functions pow() or powf(). Both pow() and powf() are heavy-

weight functions in terms of register pressure and instruction count due to the 

numerous special cases arising in general exponentiation and the difficulty of achieving 

good accuracy across the entire ranges of the base and the exponent. The functions 

exp2(), exp2f(), exp10(), and exp10f(), on the other hand, are similar to exp() and 

expf() in terms of performance, and can be as much as ten times faster than their 

pow()/powf() equivalents. 

For exponentiation with an exponent of 1/3, use the cbrt() or cbrtf() function rather 

than the generic exponentiation functions pow() or powf(), as the former are significantly 

faster than the latter. Likewise, for exponentation with an exponent of -1/3, use rcbrt() 

or rcbrtf(). 

Replace sin(π*<expr>) with sinpi(<expr>) and cos(π*<expr>) with cospi(<expr>). This 

is advantageous with regard to both accuracy and performance. As a particular example, 



 
Instruction Optimizations 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  57 

to evaluate the sine function in degrees instead of radians, use sinpi(x/180.0). 

Similarly, the single-precision functions sinpif() and cospif() should replace calls to 

sinf() and cosf() when the function argument is of the form π*<expr>. (The 

performance advantage sinpi() has over sin() is due to simplified argument reduction; 

the accuracy advantage is because sinpi() multiplies by π only implicitly, effectively 

using an infinitely precise mathematical π rather than a single- or double-precision 

approximation thereof.) 

8.1.5 Precision-related Compiler Flags 

By default, the nvcc compiler generates IEEE-compliant code for devices of compute 

capability 2.x, but it also provides options to generate code that somewhat less accurate 

but faster and that is closer to the code generated for earlier devices: 

 -ftz=true (denormalized numbers are flushed to zero) 

 -prec-div=false (less precise division) 

 -prec-sqrt=false (less precise square root) 

Another, more aggressive, option is -use_fast_math, which coerces every 

functionName() call to the equivalent __functionName() call. This makes the code run 

faster at the cost of diminished precision and accuracy. See Section 8.1.4. 

8.2 MEMORY INSTRUCTIONS  

High Priority: Minimize the use of global memory. Prefer shared memory access 
where possible.  

Memory instructions include any instruction that reads from or writes to shared, local, 

or global memory. When accessing uncached local or global memory, there are 400 to 

600 clock cycles of memory latency.  

As an example, the assignment operator in the following sample code has a high 

throughput, but, crucially, there is a latency of 400 to 600 clock cycles to read data from 

global memory: 

__shared__ float shared[32]; 

__device__ float device[32];  

shared[threadIdx.x] = device[threadIdx.x];  

Much of this global memory latency can be hidden by the thread scheduler if there are 

sufficient independent arithmetic instructions that can be issued while waiting for the 

global memory access to complete. However, it is best to avoid accessing global memory 

whenever possible.  

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  58 

Chapter 9.  
CONTROL FLOW 

9.1 BRANCHING AND DIVERGENCE 

High Priority: Avoid different execution paths within the same warp. 

Any flow control instruction (if, switch, do, for, while) can significantly affect the 

instruction throughput by causing threads of the same warp to diverge; that is, to follow 

different execution paths. If this happens, the different execution paths must be 

serialized, since all of the threads of a warp share a program counter; this increases the 

total number of instructions executed for this warp. When all the different execution 

paths have completed, the threads converge back to the same execution path. 

To obtain best performance in cases where the control flow depends on the thread ID, 

the controlling condition should be written so as to minimize the number of divergent 

warps.  

This is possible because the distribution of the warps across the block is deterministic as 

mentioned in Section 4.1 of the CUDA C Programming Guide. A trivial example is when 

the controlling condition depends only on (threadIdx / WSIZE) where WSIZE is the warp 

size.  

In this case, no warp diverges because the controlling condition is perfectly aligned with 

the warps.  



 
Control Flow 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  59 

9.2 BRANCH PREDICATION 

 Low Priority: Make it easy for the compiler to use branch predication in lieu of 
loops or control statements. 

Sometimes, the compiler may unroll loops or optimize out if or switch statements by 

using branch predication instead. In these cases, no warp can ever diverge. The 

programmer can also control loop unrolling using  

#pragma unroll  

For more information on this pragma, refer to the CUDA C Programming Guide. 

When using branch predication, none of the instructions whose execution depends on 

the controlling condition is skipped. Instead, each such instruction is associated with a 

per-thread condition code or predicate that is set to true or false according to the 

controlling condition. Although each of these instructions is scheduled for execution, 

only the instructions with a true predicate are actually executed. Instructions with a false 

predicate do not write results, and they also do not evaluate addresses or read operands.  

The compiler replaces a branch instruction with predicated instructions only if the 

number of instructions controlled by the branch condition is less than or equal to a 

certain threshold: If the compiler determines that the condition is likely to produce 

many divergent warps, this threshold is 7; otherwise it is 4.  

9.3 LOOP COUNTERS SIGNED VS. UNSIGNED 

Medium Priority: Use signed integers rather than unsigned integers as loop 
counters. 

In the C language standard, unsigned integer overflow semantics are well defined, 

whereas signed integer overflow causes undefined results. Therefore, the compiler can 

optimize more aggressively with signed arithmetic than it can with unsigned arithmetic. 

This is of particular note with loop counters: since it is common for loop counters to 

have values that are always positive, it may be tempting to declare the counters as 

unsigned. For slightly better performance, however, they should instead be declared as 

signed. 

For example, consider the following code: 

for (i = 0; i < n; i++) { 

    out[i] = in[offset + stride*i]; 

} 



 
Control Flow 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  60 

Here, the sub-expression stride*i could overflow a 32-bit integer, so if i is declared as 

unsigned, the overflow semantics prevent the compiler from using some optimizations 

that might otherwise have applied, such as strength reduction. If instead i is declared as 

signed, where the overflow semantics are undefined, the compiler has more leeway to 

use these optimizations. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  61 

DEPLOYING CUDA APPLICATIONS 

Having completed the GPU acceleration of one or more components of the application it 

is possible to compare the outcome with the original expectation. Recall that the initial 

assess step allowed the developer to determine an upper bound for the potential 

speedup attainable by accelerating given hotspots. 

Before tackling other hotspots to improve the total speedup, the developer should 

consider taking the partially parallelized implementation and carry it through to 

production. This is important for a number of reasons; for example, it allows the user to 

profit from their investment as early as possible (the speedup may be partial but is still 

valuable), and it minimizes risk for the developer and the user by providing an 

evolutionary rather than revolutionary set of changes to the application. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  62 

Chapter 10. UNDERSTANDING THE 
PROGRAMMING ENVIRONMENT 

With each generation of NVIDIA processors, new features are added to the GPU that 

CUDA can leverage. Consequently, it’s important to understand the characteristics of 

the architecture.  

Programmers should be aware of two version numbers. The first is the compute 

capability, and the second is the version number of the CUDA Runtime and CUDA 

Driver APIs. 

10.1 CUDA COMPUTE CAPABILITY 

The compute capability describes the features of the hardware and reflects the set of 

instructions supported by the device as well as other specifications, such as the 

maximum number of threads per block and the number of registers per multiprocessor. 

Higher compute capability versions are supersets of lower (that is, earlier) versions, so 

they are backward compatible.  

The compute capability of the GPU in the device can be queried programmatically as 

illustrated in the NVIDIA GPU Computing SDK in the deviceQuery sample. The output 

for that program is shown in Figure 10.1. This information is obtained by calling 

cudaGetDeviceProperties() and accessing the information in the structure it returns. 



Understanding the Programming Environment 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  63 

 

Figure 10.1 Sample CUDA configuration data reported by deviceQuery 

The major and minor revision numbers of the compute capability are shown on the third 

and fourth lines of Figure 10.1. Device 0 of this system has compute capability 1.1. 

More details about the compute capabilities of various GPUs are in Appendices A and F 

of the CUDA C Programming Guide. In particular, developers should note the number of 

multiprocessors on the device, the number of registers and the amount of memory 

available, and any special capabilities of the device. 

10.2 ADDITIONAL HARDWARE DATA 

Certain hardware features are not described by the compute capability. For example, the 

ability to overlap kernel execution with asynchronous data transfers between the host 

and the device is available on most but not all GPUs with compute capability 1.1. In such 

cases, call cudaGetDeviceProperties() to determine whether the device is capable of a 

certain feature. For example, the deviceOverlap field of the device property structure 

indicates whether overlapping kernel execution and data transfers is possible (displayed 

in the “Concurrent copy and execution” line of Figure 10.1); likewise, the 

canMapHostMemory field indicates whether zero-copy data transfers can be performed. 

10.3 CUDA RUNTIME AND DRIVER API VERSION 

The CUDA Driver API and the CUDA Runtime are two of the programming interfaces 

to CUDA. Their version number enables developers to check the features associated 

with these APIs and decide whether an application requires a newer (later) version than 



Understanding the Programming Environment 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  64 

the one currently installed. This is important because the CUDA Driver API is backward 

compatible but not forward compatible, meaning that applications, plug-ins, and libraries 

(including the CUDA Runtime) compiled against a particular version of the Driver API 

will continue to work on subsequent (later) driver releases. However, applications, plug-

ins, and libraries (including the CUDA Runtime) compiled against a particular version 

of the Driver API may not work on earlier versions of the driver, as illustrated in Figure 

10.2. 

1.0 

Driver

Apps,

Libs & 

Plug-ins

1.1 

Driver 

Apps,

Libs & 

Plug-ins

2.0 

Driver 

Apps,

Libs & 

Plug-ins

Compatible Incompatible

...

...

 

Figure 10.2 Compatibility of CUDA versions 

10.4 WHICH COMPUTE CAPABILITY TO TARGET 

When in doubt about the compute capability of the hardware that will be present at 

runtime, it is best to assume a compute capability of 1.0 as defined in the CUDA C 

Programming Guide, Section F.1, or a compute capability of 1.3 if double-precision 

arithmetic is required. 

To target specific versions of NVIDIA hardware and CUDA software, use the  

–arch, -code, and –gencode options of nvcc.  Code that contains double-precision 

arithmetic, for example, must be compiled with “-arch=sm_13” (or higher compute 

capability), otherwise double-precision arithmetic will get demoted to single-precision 

arithmetic (see Section 4.3.3). This and other compiler switches are discussed further in 

Appendix B. 



Understanding the Programming Environment 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  65 

10.5 CUDA RUNTIME 

The host runtime component of the CUDA software environment can be used only by 

host functions. It provides functions to handle the following: 

 Device management 

 Context management 

 Memory management 

 Code module management 

 Execution control 

 Texture reference management 

 Interoperability with OpenGL and Direct3D 

As compared to the lower-level CUDA Driver API, the CUDA Runtime greatly eases 

device management by providing implicit initialization, context management, and 

device code module management.   The C/C++ host code generated by nvcc utilizes the 

CUDA Runtime, so applications that link to this code will depend on the CUDA 

Runtime; similarly, any code that uses the cuBLAS, cuFFT, and other CUDA Toolkit 

libraries will also depend on the CUDA Runtime, which is used internally by these 

libraries. 

The functions that make up the CUDA Runtime API are explained in the CUDA Toolkit 

Reference Manual. 

The CUDA Runtime handles kernel loading and setting up kernel parameters and 

launch configuration before the kernel is launched. The implicit driver version checking, 

code initialization, CUDA context management, CUDA module management (cubin to 

function mapping), kernel configuration, and parameter passing are all performed by 

the CUDA Runtime. 

It comprises two principal parts:  

 A C-style function interface (cuda_runtime_api.h). 

 C++-style convenience wrappers (cuda_runtime.h) built on top of the C-style 

functions. 

For more information on the Runtime API, refer to Section 3.2 of the CUDA C 

Programming Guide. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  66 

Chapter 11.  
PREPARING THE APPLICATION FOR 
DEPLOYMENT 

11.1 ERROR HANDLING 

All CUDA Runtime API calls return an error code of type cudaError_t; the return value 

will be equal to cudaSuccess if no errors have occurred. (The exceptions to this are kernel 

launches, which return void, and cudaGetErrorString(), which returns a character string 

describing the cudaError_t code that was passed into it.) The CUDA Toolkit libraries 

(cuBLAS, cuFFT, etc.) likewise return their own sets of error codes. 

Since some CUDA API calls and all kernel launches are asynchronous with respect to 

the host code, errors may be reported to the host asynchronously as well; often this 

occurs the next time the host and device synchronize with each other, such as during a 

call to cudaMemcpy() or to cudaDeviceSynchronize(). 

Always check the error return values on all CUDA API functions, even for functions that 

are not expected to fail, as this will allow the application to detect and recover from 

errors as soon as possible should they occur. Applications that do not check for CUDA 

API errors could at times run to completion without having noticed that the data 

calculated by the GPU is incomplete, invalid, or uninitialized. 

11.2 DISTRIBUTING THE CUDA RUNTIME AND 
LIBRARIES 

The CUDA Toolkit’s end-user license agreement (EULA) allows for redistribution of 

many of the CUDA libraries under certain terms and conditions. 



 
Preparing  the Application for Deployment 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  67 

This allows applications that depend on these libraries to redistribute the exact versions 

of the libraries against which they were built and tested, thereby avoiding any trouble 

for end users who might have a different version of the CUDA Toolkit (or perhaps none 

at all) installed on their machines. 

Please refer to the EULA for details. 

Note: this does not apply to the NVIDIA driver; the end user must still download and 

install an NVIDIA driver appropriate to their GPU(s) and operating system. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  68 

Chapter 12.  
DEPLOYMENT INFRASTRUCTURE TOOLS 

12.1 NVIDIA-SMI 

The NVIDIA System Management Interface (nvidia-smi) is a command line utility that 

aids in the management and monitoring of NVIDIA GPU devices. This utility allows 

administrators to query GPU device state and, with the appropriate privileges, permits 

administrators to modify GPU device state. nvidia-smi is targeted at Tesla and certain 

Quadro GPUs, though limited support is also available on other NVIDIA GPUs.  

nvidia-smi ships with NVIDIA GPU display drivers on Linux, and with 64-bit Windows 

Server 2008 R2 and Windows 7. nvidia-smi can output queried information as XML or 

as human-readable plain text either to standard output or to a file. See the nvidia-smi 

documenation for details. Please note that new versions of nvidia-smi are not 

guaranteed to be backward-compatible with previous versions. 

12.1.1 Queryable state 
 ECC error counts. Both correctable single-bit and detectable double-bit errors are 

reported. Error counts are provided for both the current boot cycle and the lifetime 

of the GPU. 

 GPU utilization. Current utilization rates are reported for both the compute 

resources of the GPU and the memory interface. 

 Active compute process. The list of active processes running on the GPU is reported, 

along with the corresponding process name/ID and allocated GPU memory. 

 Clocks and performance state.  Max and current clock rates are reported for several 

important clock domains, as well as the current GPU performance state (pstate). 

 Temperature and fan speed. The current GPU core temperature is reported, along 

with fan speeds for products with active cooling. 



 
Deployment Infrastructure Tools 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  69 

 Power management. The current board power draw and power limits are reported 

for products that report these measurements. 

 Identification. Various dynamic and static information is reported, including board 

serial numbers, PCI device IDs, VBIOS/Inforom version numbers and product 

names. 

12.1.2 Modifiable state 
 ECC mode. Enable and disable ECC reporting. 

 ECC reset. Clear single- and double-bit ECC error counts. 

 Compute mode. Indicate whether compute processes can run on the GPU and 

whether they run exclusively or concurrently with other compute processes. 

 Persistence mode. Indicate whether the NVIDIA driver stays loaded when no 

applications are connected to the GPU. It is best to enable this option in most 

circumstances. 

 GPU reset. Reinitialize the GPU hardware and software state via a secondary bus 

reset.  

12.2 NVML 

The NVIDIA Management Library (NVML) is a C-based interface that provides direct 

access to the queries and commands exposed via nvidia-smi intended as a platform for 

building 3rd-party system management applications. The NVML API is available on the 

NVIDIA developer website as part of the Tesla Deployment Kit through a single header 

file and is accompanied by PDF documentation, stub libraries, and sample applications; 

see http://developer.nvidia.com/tesla-deployment-kit. Each new version of NVML is 

backward-compatible.  

An additional set of Perl and Python bindings are provided for the NVML API. These 

bindings expose the same features as the C-based interface and also provide backwards 

compatibility. The Perl bindings are provided via CPAN and the Python bindings via 

PyPI. 

All of these products (nvidia-smi, NVML, and the NVML language bindings) are 

updated with each new CUDA release and provide roughly the same functionality. 

See http://developer.nvidia.com/nvidia-management-library-nvml for additional 

information. 

http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/nvidia-management-library-nvml


 
Deployment Infrastructure Tools 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  70 

12.3 CLUSTER MANAGEMENT TOOLS 

Managing your GPU cluster will help achieve maximum GPU utilization and help you 

and your users extract the best possible performance. Many of the industry’s most 

popular cluster management tools now support CUDA GPUs via NVML. For a listing of 

some of these tools, see http://developer.nvidia.com/cluster-management. 

12.4 COMPILER JIT CACHE MANAGEMENT 

Any PTX device code loaded by an application at runtime is compiled further to binary 

code by the device driver. This is called just-in-time compilation (JIT). Just-in-time 

compilation increases application load time but allows applications to benefit from latest 

compiler improvements. It is also the only way for applications to run on devices that 

did not exist at the time the application was compiled. 

When JIT compilation of PTX device code is used, the NVIDIA driver caches the 

resulting binary code on disk. Some aspects of this behavior such as cache location and 

maximum cache size can be controlled via the use of environment variables; see Section 

3.1.1.2 of the CUDA C Programming Guide. 

12.5 CUDA_VISIBLE_DEVICES 

It is possible to rearrange the collection of installed CUDA devices that will visible to 

and enumerated by a CUDA application prior to the start of that application by way of 

the CUDA_VISIBLE_DEVICES environment variable. 

Devices to be made visible to the application should be included as a comma-separated 

list in terms of the system-wide list of enumerable devices. For example, to use only 

devices 0 and 2 from the system-wide list of devices, set CUDA_VISIBLE_DEVICES=0,2 

before launching the application. The application will then enumerate these devices as 

device 0 and device 1, respectively. 

 

http://developer.nvidia.com/cluster-management


 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  71 

Appendix A.  
RECOMMENDATIONS AND BEST PRACTICES 

This appendix contains a summary of the recommendations for optimization that are 

explained in this document.  

A.1 Overall Performance Optimization 
Strategies 

Performance optimization revolves around three basic strategies:  

 Maximizing parallel execution  

 Optimizing memory usage to achieve maximum memory bandwidth  

 Optimizing instruction usage to achieve maximum instruction throughput 

Maximizing parallel execution starts with structuring the algorithm in a way that 

exposes as much data parallelism as possible. Once the parallelism of the algorithm has 

been exposed, it needs to be mapped to the hardware as efficiently as possible. This is 

done by carefully choosing the execution configuration of each kernel launch. The 

application should also maximize parallel execution at a higher level by explicitly 

exposing concurrent execution on the device through streams, as well as maximizing 

concurrent execution between the host and the device.  

Optimizing memory usage starts with minimizing data transfers between the host and 

the device because those transfers have much lower bandwidth than internal device data 

transfers. Kernel access to global memory also should be minimized by maximizing the 

use of shared memory on the device. Sometimes, the best optimization might even be to 

avoid any data transfer in the first place by simply recomputing the data whenever it is 

needed.  



 
Deployment Infrastructure Tools 

www.nvidia.com 

CUDA C Best Practices Guide DG-05603-001_v4.1  |  72 

The effective bandwidth can vary by an order of magnitude depending on the access 

pattern for each type of memory. The next step in optimizing memory usage is therefore 

to organize memory accesses according to the optimal memory access patterns. This 

optimization is especially important for global memory accesses, because latency of 

access costs hundreds of clock cycles. Shared memory accesses, in counterpoint, are 

usually worth optimizing only when there exists a high degree of bank conflicts.  

As for optimizing instruction usage, the use of arithmetic instructions that have low 

throughput should be avoided. This suggests trading precision for speed when it does 

not affect the end result, such as using intrinsics instead of regular functions or single 

precision instead of double precision. Finally, particular attention must be paid to 

control flow instructions due to the SIMT (single instruction multiple thread) nature of 

the device. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  73 

Appendix B.  
NVCC COMPILER SWITCHES 

B.1 NVCC 

The NVIDIA nvcc compiler driver converts .cu files into C for the host system and 

CUDA assembly or binary instructions for the device. It supports a number of 

command-line parameters, of which the following are especially useful for optimization 

and related best practices: 

 -arch=sm_13 or higher is required for double precision. See Section 4.3.3. 

 –maxrregcount=N specifies the maximum number of registers kernels can use at a per-

file level. See Section 6.2.6.1. (See also the __launch_bounds__ qualifier discussed in 

Section B.17 of the CUDA C Programming Guide to control the number of registers 

used on a per-kernel basis.) 

 --ptxas-options=-v or -Xptxas=-v lists per-kernel register, shared, and constant 

memory usage. 

 -ftz=true (denormalized numbers are flushed to zero) 

 -prec-div=false (less precise division) 

 -prec-sqrt=false (less precise square root) 

 -use_fast_math compiler option of nvcc coerces every functionName() call to the 

equivalent __functionName() call. This makes the code run faster at the cost of 

diminished precision and accuracy. See Section 8.1.4. 

 



 

www.nvidia.com  

CUDA C Best Practices Guide DG-05603-001_v4.1  |  74 

Appendix C.  
REVISION HISTORY 

C.1 Version 4.1 

 Rearranged the entire guide based on the Assess, Parallelize, Optimize, Deploy 

pattern. 

 



 

www.nvidia.com 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER 

DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO 
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND 

EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR 

A PARTICULAR PURPOSE.  

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 

responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication of otherwise under 

any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change 

without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA 
Corporation products are not authorized as critical components in life support devices or systems without 

express written approval of NVIDIA Corporation. 

Trademarks 

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and 
other countries. Other company and product names may be trademarks of the respective companies with 

which they are associated. 

Copyright  

© 2012 NVIDIA Corporation. All rights reserved.  


	PREFACE
	What is This Document?
	Who Should Read This Guide?
	Assess, Parallelize, Optimize, Deploy
	Assess
	Parallelize
	Optimize
	Deploy

	Recommendations and Best Practices

	ASSESSING YOUR APPLICATION
	Chapter 1.  Heterogeneous Computing
	1.1 Differences Between Host and Device
	1.2 What Runs on a CUDA-Enabled Device?

	Chapter 2.  Application Profiling
	2.1 Profile
	2.1.1 Creating the Profile
	2.1.2 Identifying Hotspots
	2.1.3 Understanding Scaling
	2.1.3.1 Strong scaling and Amdahl’s Law
	2.1.3.2 Weak scaling and Gustafson’s Law
	2.1.3.3 Applying Strong and Weak Scaling



	PARALLELIZING YOUR APPLICATION
	Chapter 3.  Getting Started
	3.1 Parallel Libraries
	3.2 Parallelizing Compilers
	3.3 Coding to Expose Parallelism

	Chapter 4.  Getting The Right Answer
	4.1 Verification
	4.1.1 Reference Comparison
	4.1.2 Unit Testing

	4.2 Debugging
	4.3 Numerical Accuracy and Precision
	4.3.1 Single vs. Double Precision
	4.3.2 Floating-Point Math Is Not Associative
	4.3.3 Promotions to Doubles and Truncations to Floats
	4.3.4 IEEE 754 Compliance
	4.3.5 x86 80-bit Computations


	OPTIMIZING CUDA APPLICATIONS
	Chapter 5.  Performance Metrics
	5.1 Timing
	5.1.1 Using CPU Timers
	5.1.2 Using CUDA GPU Timers

	5.2 Bandwidth
	5.2.1 Theoretical Bandwidth Calculation
	5.2.2 Effective Bandwidth Calculation
	5.2.3 Throughput Reported by Visual Profiler


	Chapter 6.  Memory Optimizations
	6.1 Data Transfer Between Host and Device
	6.1.1 Pinned Memory
	6.1.2 Asynchronous Transfers and Overlapping Transfers with Computation
	6.1.3 Zero Copy
	6.1.4 Unified Virtual Addressing

	6.2 Device Memory Spaces
	6.2.1 Coalesced Access to Global Memory
	6.2.1.1 A Simple Access Pattern
	6.2.1.2 A Sequential but Misaligned Access Pattern
	6.2.1.3 Effects of Misaligned Accesses
	6.2.1.4 Strided Accesses

	6.2.2 Shared Memory
	6.2.2.1 Shared Memory and Memory Banks
	6.2.2.2 Shared Memory in Matrix Multiplication (C = AB)
	6.2.2.3 Shared Memory in Matrix Multiplication (C = AAT)

	6.2.3 Local Memory
	6.2.4 Texture Memory
	6.2.4.1 Additional Texture Capabilities

	6.2.5 Constant Memory
	6.2.6 Registers
	6.2.6.1 Register Pressure


	6.3 Allocation

	Chapter 7.  Execution Configuration Optimizations
	7.1 Occupancy
	7.1.1 Calculating Occupancy

	7.2 Hiding Register Dependencies
	7.3 Thread and Block Heuristics
	7.4 Effects of Shared Memory

	Chapter 8.  Instruction Optimizations
	8.1 Arithmetic Instructions
	8.1.1 Division and Modulo Operations
	8.1.2 Reciprocal Square Root
	8.1.3 Other Arithmetic Instructions
	8.1.4 Math Libraries
	8.1.5 Precision-related Compiler Flags

	8.2 Memory Instructions

	Chapter 9.  Control Flow
	9.1 Branching and Divergence
	9.2 Branch Predication
	9.3 Loop counters signed vs. unsigned

	DEPLOYING CUDA APPLICATIONS
	Chapter 10. Understanding the Programming Environment
	10.1 CUDA Compute Capability
	10.2 Additional Hardware Data
	10.3 CUDA Runtime and Driver API Version
	10.4 Which Compute Capability to Target
	10.5 CUDA Runtime

	Chapter 11.  Preparing  the Application for Deployment
	11.1 Error handling
	11.2 Distributing the CUDA Runtime and libraries

	Chapter 12.  Deployment Infrastructure Tools
	12.1 nvidia-smi
	12.1.1 Queryable state
	12.1.2 Modifiable state

	12.2 NVML
	12.3 Cluster Management Tools
	12.4 Compiler JIT Cache Management
	12.5 CUDA_VISIBLE_DEVICES

	Appendix A.  Recommendations and Best Practices
	Appendix B.  NVCC Compiler Switches
	Appendix C.  Revision History

